Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T17:10:15.336Z Has data issue: false hasContentIssue false

Towards laser ion acceleration with holed targets

Published online by Cambridge University Press:  26 May 2020

Prokopis Hadjisolomou*
Affiliation:
Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, 18221Prague, Czech Republic
S. V. Bulanov
Affiliation:
Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, 18221Prague, Czech Republic National Institutes for Quantum and Radiological Science and Technology (QST), Kansai Photon Science Institute, 8-1-7 Umemidai, Kizugawa, Kyoto619-0215, Japan
G. Korn
Affiliation:
Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, 18221Prague, Czech Republic
*
Email address for correspondence: Prokopis.Hadjisolomou@eli-beams.eu

Abstract

Although the interaction of a flat foil with currently available laser intensities is now considered a routine process, during the last decade, emphasis has been given to targets with complex geometries aiming at increasing the ion energy. This work presents a target geometry where two symmetric side holes and a central hole are drilled into the foil. A study of the various side-hole and central-hole length combinations is performed with two-dimensional particle-in-cell simulations for polyethylene targets and a laser intensity of $5.2\times 10^{21}~\text{W}~\text{cm}^{-2}$. The holed targets show a remarkable increase of the conversion efficiency, which corresponds to a different target configuration for electrons, protons and carbon ions. Furthermore, diffraction of the laser pulse leads to a directional high energy electron beam, with a temperature of ${\sim}40~\text{MeV}$, or seven times higher than in the case of a flat foil. The higher conversion efficiency consequently leads to a significant enhancement of the maximum proton energy from holed targets.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arber, T. D., Bennett, K., Brady, C. S., Lawrence-Douglas, A., Ramsay, M. G., Sircombe, N. J., Gillies, P., Evans, R. G., Schmitz, H., Bell, A. R. et al. 2015 Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Control. Fusion 57 (11), 126.CrossRefGoogle Scholar
Atzeni, S., Temporal, M. & Honrubia, J. J. 2002 A first analysis of fast ignition of precompressed ICF fuel by laser-accelerated protons. Nucl. Fusion 42 (3), 14.CrossRefGoogle Scholar
Bamberger, E. & Tschirner, F. 1900 Ueber die Einwirkung von Diazomethan auf $\unicode[STIX]{x1D6FD}$-Arylhydroxylamine. Ber. Dtsch. Chem. Ges. 33, 955959.CrossRefGoogle Scholar
Bargsten, C., Hollinger, R., Capeluto, M., Kaymak, V., Pukhov, A., Wang, S., Rockwood, A., Wang, Y., Keiss, D., Tommasini, R. et al. 2017 Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: scaling to terabar pressures. Sci. Adv. 3, e1601558.CrossRefGoogle ScholarPubMed
Bartal, T., Foord, M. E., Bellei, C., Key, M. H., Gaillard, K. A., Flippo, S. A., Offermann, D. T., Patel, P. K., Jarrott, L. C., Higginson, D. P. et al. 2012 Focusing of short-pulse high-intensity laser-accelerated proton beams. Nat. Phys. 8, 139142.CrossRefGoogle Scholar
Bashinov, A. V., Gonoskov, A. A., Kim, A. V., Mourou, G. & Sergeev, A. M. 2014 New horizons for extreme light physics with mega-science project XCELS. Eur. Phys. J. Spec. Top. 223 (6), 11051112.CrossRefGoogle Scholar
Boody, F. P., Höpfl, R., Hora, H. & Kelly, J. C. 1996 Laser-driven ion source for reduced-cost implantation of metal ions for strong reduction of dry friction and increased durability. Laser Part. Beams 14 (3), 443448.CrossRefGoogle Scholar
Borghesi, M., Campbell, D. H., Schiavi, A., Haines, M. G., Willi, O., MacKinnon, A. J., Patel, P., Gizzi, L. A., Galimberti, M., Clarke, R. J. et al. 2002 Electric field detection in laser–plasma interaction experiments via the proton imaging technique. Phys. Plasmas 9 (5), 22142220.CrossRefGoogle Scholar
Borghesi, M., Romagnani, L., Schiavi, A., Campbell, D. H., Haines, M. G., Willi, O., Mackinnon, A. J., Galimberti, M., Gizzi, L., Clarke, R. J. et al. 2003 Measurement of highly transient electrical charging following high-intensity lasersolid interaction. Appl. Phys. Lett. 82 (10), 15291531.CrossRefGoogle Scholar
Boris, J. P. 1970 Relativistic plasma simulation-optimization of a hybrid code. In Proceeding of Fourth Conference on Numerical Simulations of Plasmas, pp. 367. Naval Research Laboratory, Washington, D.C.Google Scholar
Born, M. & Wolfl, E. 1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn.Cambridge University Press.CrossRefGoogle Scholar
Braenzel, J., Andreev, A. A., Abicht, F., Ehrentraut, L., Platonov, K. & Schnürer, M. 2017 Amplification of relativistic electron bunches by acceleration in laser fields. Phys. Rev. Lett. 118, 014801.CrossRefGoogle ScholarPubMed
Bulanov, S. S., Brantov, A., Bychenkov, V. Y., Chvykov, V., Kalinchenko, G., Matsuoka, T., Rousseau, P., Reed, S., Yanovsky, V., Litzenberg, D. W. et al. 2008 Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime. Phys. Rev. E 78, 026412.Google ScholarPubMed
Bulanov, S. S., Esarey, E., Schroeder, C. B., Bulanov, S. V., Esirkepov, T. Z., Kando, M., Pegoraro, F. & Leemans, W. P. 2016 Radiation pressure acceleration: the factors limiting maximum attainable ion energy. Phys. Plasmas 23 (5), 056703.CrossRefGoogle Scholar
Bulanov, S. S., Bychenkov, V. Y., Chvykov, V., Kalinchenko, G., Litzenberg, D. W., Matsuoka, T., Thomas, A. G. R., Willingale, L., Yanovsky, V., Krushelnick, K. et al. 2010b Generation of GeV protons from 1 PW laser interaction with near critical density targets. Phys. Plasmas 17 (4), 043105.CrossRefGoogle Scholar
Bulanov, S. V., Daido, H., Esirkepov, T. Z., Khoroshkov, V. S., Koga, J., Nishihara, K., Pegoraro, F., Tajima, T. & Yamagiwa, M. 2004 Feasibility of using laser ion accelerators in proton therapy. AIP Conf. Proc. 740 (1), 414429.Google Scholar
Bulanov, S. V. & Esirkepov, T. Z. 2007 Comment on ‘Collimated Multi-MeV Ion Beams from High-Intensity Laser Interactions with Underdense Plasma’. Phys. Rev. Lett. 98, 049503.CrossRefGoogle Scholar
Bulanov, S. V., Esirkepov, T. Z., Califano, F., Kato, Y., Liseikina, T. V., Mima, K., Naumova, N. M., Nishihara, K., Pegoraro, F., Ruhl, H. et al. 2000 Generation of collimated beams of relativistic ions in laser-plasma interactions. J. Expl Theor. Phys. Lett. 71 (10), 407411.CrossRefGoogle Scholar
Bulanov, S. V., Esirkepov, T. Z., Kamenets, F. F., Kato, Y., Kuznetsov, A. V., Nishihara, K., Pegoraro, F., Tajima, T. & Khoroshkov, V. S. 2002 Generation of high-quality charged particle beams during the acceleration of ions by high-power laser radiation. Plasma Phys. Rep. 28, 975991.CrossRefGoogle Scholar
Bulanov, S. V. & Khoroshkov, V. S. 2002 Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep. 28 (5), 453456.CrossRefGoogle Scholar
Bulanov, S. S., Litzenberg, D. W., Krushelnick, K. & Maksimchuk, A.2010a Directed Coulomb Explosion regime of ion acceleration from mass limited targets by linearly and circularly polarized laser pulses. arXiv:1007.3963.Google Scholar
Bulanov, S. V., Wilkens, J. J., Esirkepov, T. Z., Korn, G., Kraft, G., Kraft, S. D., Molls, M. & Khoroshkov, V. S. 2014 Laser ion acceleration for hadron therapy. Phys.-Uspekhi 57 (12), 11491179.CrossRefGoogle Scholar
Bulanov, S. V., Yogo, A., Esirkepov, T. Z., Koga, J. K., Bulanov, S. S., Kondo, K. & Kando, M. 2015 Stochastic regimes in the driven oscillator with a step-like nonlinearity. Phys. Plasmas 22 (6), 063108.CrossRefGoogle Scholar
Burza, M., Gonoskov, A., Genoud, G., Persson, A., Svensson, K., Quinn, M., McKenna, P., Marklund, M. & Wahlström, C. G. 2011 Hollow microspheres as targets for staged laser-driven proton acceleration. New J. Phys. 13 (1), 013030.Google Scholar
Daido, H., Nishiuchi, M. & Pirozhkov, A. S. 2012 Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75 (5), 056401.Google ScholarPubMed
Ditmire, T., Tisch, J. W. G., Springate, E., Mason, M. B., Hay, N., Smith, R. A., Marangos, J. & Hutchinson, M. H. R. 1997 High-energy ions produced in explosions of superheated atomic clusters. Nature 386, 5456.CrossRefGoogle Scholar
Esirkepov, T. Z., Borghesi, M., Bulanov, S. V., Mourou, G. & Tajima, T. 2004 Highly efficient relativistic-ion generation in the laser-piston regime. Phys. Rev. Lett. 92, 175003.CrossRefGoogle ScholarPubMed
Esirkepov, T. Z., Bulanov, S. V., Nishihara, K., Tajima, T., Pegoraro, F., Khoroshkov, V. S., Mima, K., Daido, H., Kato, Y., Kitagawa, Y. et al. 2002 Proposed double-layer target for the generation of high-quality laser-accelerated ion beams. Phys. Rev. Lett. 89, 175003.CrossRefGoogle ScholarPubMed
Fischer, J. & Wegener, M. 2013 Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev. 7 (1), 2244.CrossRefGoogle Scholar
Hadjisolomou, P., Tsygvintsev, I. P., Sasorov, P., Gasilov, V., Korn, G. & Bulanov, S. V. 2020 Preplasma effects on laser ion generation from thin foil targets. Phys. Plasmas 27 (1), 013107.CrossRefGoogle Scholar
Haines, M. G., Wei, M. S., Beg, F. N. & Stephens, R. B. 2009 Hot-electron temperature and laser-light absorption in fast ignition. Phys. Rev. Lett. 102, 045008.CrossRefGoogle ScholarPubMed
Higginson, A., Gray, R. J., King, M., Dance, R. J., Williamson, S. D. R., Butler, N. M. H., Wilson, R., Capdessus, R., Armstrong, C., Green, J. S. et al. 2018 Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat Commun. 9 (724).CrossRefGoogle Scholar
Higuera, A. V. & Cary, J. R. 2017 Structure-preserving second-order integration of relativistic charged particle trajectories in electromagnetic fields. Phys. Plasmas 24 (5), 052104.CrossRefGoogle Scholar
Ji, L. L., Snyder, J., Pukhov, A., Freeman, R. R. & Akli, K. U. 2016 Towards manipulating relativistic laser pulses with micro-tube plasma lenses. Sci. Rep. 6, 23256.Google ScholarPubMed
Ji, L. L., Snyder, J. & Shen, B. F. 2019 Single-pulse laser-electron collision within a micro-channel plasma target. Plasma Phys. Control. Fusion 61 (6), 065019.CrossRefGoogle Scholar
Jiang, S., Ji, L. L., Audesirk, H., George, K. M., Snyder, J., Krygier, A., Poole, P., Willis, C., Daskalova, R., Chowdhury, E. et al. 2016 Microengineering laser plasma interactions at relativistic intensities. Phys. Rev. Lett. 116, 085002.CrossRefGoogle ScholarPubMed
Kawata, S., Nagashima, T., Takano, M., Izumiyama, T., Kamiyama, D., Barada, D., Kong, Q., Gu, Y., Wang, P., Ma, Y. Y. et al. 2014 Controllability of intense-laser ion acceleration. High Power Laser Sci. Eng. 2, doi:10.1017/hpl.2014.5.CrossRefGoogle Scholar
Kim, I. J., Pae, K. H., Choi, I. W., Lee, C. L., Kim, H. T., Singhal, H., Sung, J. H., Lee, S. K., Lee, H. W., Nickles, P. V. et al. 2016 Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses. Phys. Plasmas 23 (7), 070701.CrossRefGoogle Scholar
Klimo, O., Psikal, J., Limpouch, J., Proska, J., Novotny, F., Ceccotti, T., Floquet, V. & Kawata, S. 2011 Short pulse laser interaction with micro-structured targets: simulations of laser absorption and ion acceleration. New J. Phys. 13 (5), 053028.Google Scholar
Klimo, O., Psikal, J., Limpouch, J. & Tikhonchuk, V. T. 2008 Monoenergetic ion beams from ultrathin foils irradiated by ultrahigh-contrast circularly polarized laser pulses. Phys. Rev. ST Accel. Beams 11, 031301.CrossRefGoogle Scholar
Kluge, T., Cowan, T., Debus, A., Schramm, U., Zeil, K. & Bussmann, M. 2011 Electron temperature scaling in laser interaction with solids. Phys. Rev. Lett. 107, 205003.CrossRefGoogle ScholarPubMed
Kluge, T., Enghardt, W., Kraft, S. D., Schramm, U., Zeil, K., Cowan, T. E. & Bussmann, M. 2010 Enhanced laser ion acceleration from mass-limited foils. Phys. Plasmas 17 (12), 123103.CrossRefGoogle Scholar
Kurup, A., Pasternak, J., Taylor, R., Murgatroyd, L., Ettlinger, O., Shields, W., Nevay, L., Gruber, S., Pozimski, J., Lau, H. T. et al. 2019 Simulation of a radiobiology facility for the Centre for the Clinical Application of Particles. Phys. Med. 65, 2128.CrossRefGoogle ScholarPubMed
Lezhnin, K. V., Kamenets, F. F., Esirkepov, T. Z., Bulanov, S. V., Klimo, O., Weber, S. & Korn, G. 2016 Laser ion acceleration from mass-limited targets with preplasma. Phys. Plasmas 23 (5), 053114.CrossRefGoogle Scholar
Li, Y. T., Yuan, X. H., Xu, M. H., Zheng, Z. Y., Sheng, Z. M., Chen, M., Ma, Y. Y., Liang, W. X., Yu, Q. Z., Zhang, Y. et al. 2006 Observation of a fast electron beam emitted along the surface of a target irradiated by intense femtosecond laser pulses. Phys. Rev. Lett. 96, 165003.CrossRefGoogle ScholarPubMed
Limpouch, J., Psikal, J., Andreev, A. A., Platonov, K. Y. & Kawata, S. 2008 Enhanced laser ion acceleration from mass-limited targets. Laser Part. Beams 26 (2), 225234.CrossRefGoogle Scholar
Macchi, A., Borghesi, M. & Passoni, M. 2013 Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751793.CrossRefGoogle Scholar
Maksimchuk, A., Gu, S., Flippo, K., Umstadter, D. & Bychenkov, V. 2000 Forward ion acceleration in thin films driven by a high-intensity laser. Phys. Rev. Lett. 84, 41084111.CrossRefGoogle ScholarPubMed
Mao, J. Y., Chen, L. M., Ge, X. L., Zhang, L., Yan, W. C., Li, D. Z., Liao, G. Q., Ma, J. L., Huang, K., Li, Y. T. et al. 2012 Spectrally peaked electron beams produced via surface guiding and acceleration in femtosecond laser-solid interactions. Phys. Rev. E 85, 025401.Google ScholarPubMed
Margarone, D., Klimo, O., Kim, I. J., Prokůpek, J., Limpouch, J., Jeong, T. M., Mocek, T., Pšikal, J., Kim, H. T., Proška, J. et al. 2012 Laser-driven proton acceleration enhancement by nanostructured foils. Phys. Rev. Lett. 109, 234801.CrossRefGoogle ScholarPubMed
Morita, T., Esirkepov, T. Z., Bulanov, S. V., Koga, J. & Yamagiwa, M. 2008 Tunable high-energy ion source via oblique laser pulse incident on a double-layer target. Phys. Rev. Lett. 100, 145001.CrossRefGoogle ScholarPubMed
Mourou, G. A., Tajima, T. & Bulanov, S. V. 2006 Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.CrossRefGoogle Scholar
Murakami, M., Hishikawa, Y., Miyajima, S., Okazaki, Y., Sutherland, K., Abe, M., Bulanov, S. V., Daido, H., Esirkepov, T. Z., Koga, J. et al. 2008 Radiotherapy using a laser proton accelerator. AIP Conf. Proc. 1024, 275300.Google Scholar
Nagashima, T., Takano, M., Izumiyama, T., Barada, D., Kawata, S., Gu, Y., Kong, Q., Wang, P., Ma, Y. Y. & Wang, W. M. 2013 High-quality ion beam generation in laser plasma interaction. In Proceedings of the 12th Asia Pacific Physics Conference (APPC12); doi:10.7566/JPSCP.1.015093.Google Scholar
Nakajima, H., Tokita, S., Inoue, S., Hashida, M. & Sakabe, S. 2013 Divergence-free transport of laser-produced fast electrons along a meter-long wire target. Phys. Rev. Lett. 110, 155001.CrossRefGoogle ScholarPubMed
Ogura, K., Nishiuchi, M., Pirozhkov, A. S., Tanimoto, T., Sagisaka, A., Esirkepov, T. Z., Kando, M., Shizuma, T., Hayakawa, T., Kiriyama, H. et al. 2012 Proton acceleration to 40 MeV using a high intensity, high contrast optical parametric chirped-pulse amplification/Ti:sapphire hybrid laser system. Opt. Lett. 37 (14), 28682870.CrossRefGoogle ScholarPubMed
Paasch-Colberg, T., Sokollik, T., Gorling, K., Eichmann, U., Steinke, S., Schnürer, M., Nickles, P. V., Andreev, A. & Sandner, W. 2011 New method for laser driven ion acceleration with isolated, mass-limited targets. Nucl. Instrum. Methods Phys. Res. A 653 (1), 3034.CrossRefGoogle Scholar
Park, J., Bulanov, S. S., Bin, J., Ji, Q., Steinke, S., Vay, J. L., Geddes, C. G. R., Schroeder, C. B., Leemans, W. P., Schenkel, T. et al. 2019 Ion acceleration in laser generated megatesla magnetic vortex. Phys. Plasmas 26 (10), 103108.CrossRefGoogle Scholar
Passoni, M., Bertagna, L. & Zani, A. 2010 Target normal sheath acceleration: theory, comparison with experiments and future perspectives. New J. Phys. 12 (4), 045012.Google Scholar
Patel, P. K., Mackinnon, A. J., Key, M. H., Cowan, T. E., Foord, M. E., Allen, M., Price, D. F., Ruhl, H., Springer, P. T. & Stephens, R. 2003 Isochoric heating of solid-density matter with an ultrafast proton beam. Phys. Rev. Lett. 91, 125004.CrossRefGoogle ScholarPubMed
Qiao, B., Foord, M. E., Wei, M. S., Stephens, R. B., Key, M. H., McLean, H., Patel, P. K. & Beg, F. N. 2013 Dynamics of high-energy proton beam acceleration and focusing from hemisphere-cone targets by high-intensity lasers. Phys. Rev. E 87, 013108.Google ScholarPubMed
Quinn, K., Wilson, P. A., Cecchetti, C. A., Ramakrishna, B., Romagnani, L., Sarri, G., Lancia, L., Fuchs, J., Pipahl, A., Toncian, T. et al. 2009 Laser-driven ultrafast field propagation on solid surfaces. Phys. Rev. Lett. 102, 194801.CrossRefGoogle ScholarPubMed
Ripperda, B., Bacchini, F., Teunissen, J., Xia, C., Porth, O., Sironi, L., Lapenta, G. & Keppens, R. 2018 A comprehensive comparison of relativistic particle integrators. Astrophys. J. 235 (1), 21.CrossRefGoogle Scholar
Robinson, A. P. L., Zepf, M., Kar, S., Evans, R. G. & Bellei, C. 2008 Radiation pressure acceleration of thin foils with circularly polarized laser pulses. New J. Phys. 10 (1), 013021.Google Scholar
Rocca, J. J., Shlyaptsev, V., Hollinger, R., Bargsten, C., Pukhov, A., Kaymak, V., Tommasini, R., London, R., Park, J. & Capeluto, M. 2017 Compact ultra-intense lasers and nanostructures open a path to extreme pressures. Laser Focus World 53, 2126.Google Scholar
Roth, M., Cowan, T. E., Key, M. H., Hatchett, S. P., Brown, C., Fountain, W., Johnson, J., Pennington, D. M., Snavely, R. A., Wilks, S. C. et al. 2001 Fast ignition by intense laser-accelerated proton beams. Phys. Rev. Lett. 86, 436439.CrossRefGoogle ScholarPubMed
Rus, B., Batysta, F., Čáp, J., Divoký, M., Fibrich, M., Griffiths, M., Haley, R., Havlíček, T., Hlavác, M., Hřebíček, J. et al. 2011 Outline of the ELI-Beamlines facility. In Diode-Pumped High Energy and High Power Lasers; ELI: Ultrarelativistic Laser-Matter Interactions and Petawatt Photonics; and HiPER: the European Pathway to Laser Energy (ed. Silva, L. O., Korn, G., Gizzi, L. A., Edwards, C. & Hein, J.), vol. 8080, pp. 163172. International Society for Optics and Photonics, SPIE.Google Scholar
Santala, M. I. K., Zepf, M., Beg, F. N., Clark, E. L., Dangor, A. E., Krushelnick, K., Tatarakis, M., Watts, I., Ledingham, K. W. D., McCanny, T. et al. 2001 Production of radioactive nuclides by energetic protons generated from intense laser-plasma interactions. Appl. Phys. Lett. 78 (1), 1921.CrossRefGoogle Scholar
Schwoerer, P. S., Jäckel, O., Amthor, K. U., Liesfeld, B., Ziegler, W., Sauerbrey, R., Ledingham, K. W. D. & Esirkepov, T. Z. 2006 Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets. Nature 439, 445448.CrossRefGoogle ScholarPubMed
Sentoku, Y., Liseikina, T. V., Esirkepov, T. Z., Califano, F., Naumova, N. M., Ueshima, Y., Vshivkov, V. A., Kato, Y., Mima, K., Nishihara et al. 2000 High density collimated beams of relativistic ions produced by petawatt laser pulses in plasmas. Phys. Rev. E 62, 72717281.Google ScholarPubMed
Siegman, A. E. 1986 Lasers. University Science Books.Google Scholar
Snyder, J., Ji, L. L., George, K. M., Willis, C., Cochran, G. E., Daskalova, R. L., Handler, A., Rubin, T., Poole, P. L., Nasir, D. et al. 2019 Relativistic laser driven electron accelerator using micro-channel plasma targets. Phys. Plasmas 26 (3), 033110.CrossRefGoogle Scholar
Sokollik, T., Paasch-Colberg, T., Gorling, K., Eichmann, U., Schnürer, M., Steinke, S., Nickles, P. V., Andreev, A. & Sandner, W. 2010 Laser-driven ion acceleration using isolated mass-limited spheres. New J. Phys. 12 (11), 113013.Google Scholar
Steinke, S., Bin, J. H., Park, J., Ji, Q., Nakamura, K., Gonsalves, A. J., Bulanov, S. S., Thévenet, M., Toth, C., Vay, J.-L. et al. 2020 Acceleration of high charge ion beams with achromatic divergence by petawatt laser pulses. Phys. Rev. Accel. Beams 23, 021302.CrossRefGoogle Scholar
Strickland, D. A. & Mourou, G. 1985 Compression of amplified chirped optical pulses. Opt. Commun. 56 (3), 219221.CrossRefGoogle Scholar
Tokita, S., Otani, K., Nishoji, T., Inoue, S., Hashida, M. & Sakabe, S. 2011 Collimated fast electron emission from long wires irradiated by intense femtosecond laser pulses. Phys. Rev. Lett. 106, 255001.CrossRefGoogle ScholarPubMed
Tokita, S., Sakabe, S., Nagashima, T., Hashida, M. & Inoue, S. 2015 Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses. Sci. Rep. 5, 8268.Google ScholarPubMed
Wang, J., Ho, Y. K., Kong, Q., Zhu, L. J., Feng, L., Scheid, S. & Hora, H. 1998 Electron capture and violent acceleration by an extra-intense laser beam. Phys. Rev. E 58, 65756577.Google Scholar
Wang, P. X., Ho, Y. K., Yuan, X. Q., Kong, Q., Cao, N., Sessler, A. M., Esarey, E. & Nishida, Y. 2001 Vacuum electron acceleration by an intense laser. Appl. Phys. Lett. 78 (15), 22532255.CrossRefGoogle Scholar
Wang, W. M., Chen, L. M., Mao, J. Y., Huang, K., Ma, Y., Zhao, J. R., Zhang, L., Yan, W. C., Li, D. Z., Ma, J. L. et al. 2013 Collimated quasi-monoenergetic electron beam generation from intense laser solid interaction. High Energy Density Phys. 9 (3), 578582.CrossRefGoogle Scholar
Wilks, S. C., Langdon, A. B., Cowan, T. E., Roth, M., Singh, M., Hatchett, S., Key, M. H., Pennington, D., MacKinnon, A. & Snavely, R. A. 2001 Energetic proton generation in ultra-intense lasersolid interactions. Phys. Plasmas 8 (2), 542549.CrossRefGoogle Scholar
Yogo, A., Bulanov, S. V., Mori, M., Ogura, K., Esirkepov, T. Z., Pirozhkov, A. S., Kanasaki, M., Sakaki, H., Fukuda, Y., Bolton, P. R. et al. 2015 Ion acceleration via ‘nonlinear vacuum heating’ by the laser pulse obliquely incident on a thin foil target. Plasma Phys. Control. Fusion 58 (2), 025003.Google Scholar
Yogo, A., Daido, H., Bulanov, S. V., Nemoto, K., Oishi, Y., Nayuki, T., Fujii, T., Ogura, K., Orimo, S., Sagisaka, A. et al. 2008 Laser ion acceleration via control of the near-critical density target. Phys. Rev. E 77, 016401.Google ScholarPubMed
Yogo, A., Mima, K., Iwata, N., Tosaki, S., Morace, A., Arikawa, Y., Fujioka, S., Johzaki, T., Sentoku, Y., Nishimura, H. et al. 2017 Boosting laser-ion acceleration with multi-picosecond pulses. Sci. Rep. 7, 42451.Google ScholarPubMed
Zamfir, N. V. 2012 The ELI-nuclear physics project. J. Phys.: Conf. Ser. 366, 012052.Google Scholar
Zhu, L. J., Ho, Y. K., Wang, J. X. & Kong, Q. 1998 Violent acceleration of electrons by an ultra-intense pulsed laser beam. Phys. Lett. A 248 (5), 319324.CrossRefGoogle Scholar
Zou, J. P., Le-Blanc, C., Papadopoulos, D. N., Cheriaux, G., Georges, P., Mennerat, G., Druon, F., Lecherbourg, L., Pellegrina, A., Ramirez, P. et al. 2015 Design and current progress of the Apollon 10 PW project. High. Power Laser Sci. Eng. 3, doi:10.1017/hpl.2014.41.CrossRefGoogle Scholar