Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-24T21:16:42.910Z Has data issue: false hasContentIssue false

Wave theories of non-laminar charged particle beams: from quantum to thermal regime

Published online by Cambridge University Press:  15 January 2014

Renato Fedele*
Affiliation:
Dipartimento di Fisica, Università di Napoli “Federico II” and INFN Sezione di Napoli, Italy
Fatema Tanjia
Affiliation:
Dipartimento di Fisica, Università di Napoli “Federico II” and INFN Sezione di Napoli, Italy
Dusan Jovanović
Affiliation:
Institute of Physics, University of Belgrade, Belgrade, Serbia
Sergio De Nicola
Affiliation:
Dipartimento di Fisica, Università di Napoli “Federico II” and INFN Sezione di Napoli, Italy SPIN-CNR, Complesso Universitario di M.S. Angelo, Napoli, Italy
Concetta Ronsivalle
Affiliation:
Centro Ricerche ENEA, Frascati, Italy
*
Email address for correspondence: renato.fedele@na.infn.it

Abstract

The standard classical description of non-laminar charged particle beams in paraxial approximation is extended to the context of two wave theories. The first theory that we discuss (Fedele R. and Shukla, P. K. 1992 Phys. Rev. A45, 4045. Tanjia, F. et al. 2011 Proceedings of the 38th EPS Conference on Plasma Physics, Vol. 35G. Strasbourg, France: European Physical Society) is based on the Thermal Wave Model (TWM) (Fedele, R. and Miele, G. 1991 Nuovo Cim. D13, 1527.) that interprets the paraxial thermal spreading of beam particles as the analog of quantum diffraction. The other theory is based on a recently developed model (Fedele, R. et al. 2012a Phys. Plasmas19, 102106; Fedele, R. et al. 2012b AIP Conf. Proc.1421, 212), hereafter called Quantum Wave Model (QWM), that takes into account the individual quantum nature of single beam particle (uncertainty principle and spin) and provides collective description of beam transport in the presence of quantum paraxial diffraction. Both in quantum and quantum-like regimes, the beam transport is governed by a 2D non-local Schrödinger equation, with self-interaction coming from the nonlinear charge- and current-densities. An envelope equation of the Ermakov–Pinney type, which includes collective effects, is derived for both TWM and QWM regimes. In TWM, such description recovers the well-known Sacherer's equation (Sacherer, F. J. 1971 IEEE Trans. Nucl. Sci.NS-18, 1105). Conversely, in the quantum regime and in Hartree's mean field approximation, one recovers the evolution equation for a single-particle spot size, i.e. for a single quantum ray spot in the transverse plane (Compton regime). We demonstrate that such quantum evolution equation contains the same information as the evolution equation for the beam spot size that describes the beam as a whole. This is done heuristically by defining the lowest QWM state accessible by a system of non-overlapping fermions. The latter are associated with temperature values that are sufficiently low to make the single-particle quantum effects visible on the beam scale, but sufficiently high to make the overlapping of the single-particle wave functions negligible. This lowest QWM state constitutes the border between the fundamental single-particle Compton regime and the collective quantum and thermal regimes at larger (nano- to micro-) scales. Comparing it with the beam parameters in the existing accelerators, we find that it is feasible to achieve nano-sized beams in advanced compact machines.

Type
Papers
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, D., Fedele, R., Vaccaro, V., Lisak, M., Berntson, A. and Johansson, S. 1999 Phys. Lett. A 258, 244.Google Scholar
Assmann, et al. 2003a The CLIC stability study on the feasibility of colliding high energy nanobeams. In: 26th Advanced ICFA Beam Dynamics Workshop on Nanometer Size Colliding Beams, Lausanne, Switzerland, 2–6 September 2002, CERN Proceedings 2003-001, p. 87.Google Scholar
Assmann, R.et al. 2003b Colliding Nanobeams in CLIC with magnets stabilized to the sub-nm level. In 20th IEEE Particle Accelerator Conference, Portland, OR, 12–16 May 2003, CERN-AB-2003-011, CLIC Note 563, 665 pp.Google Scholar
Batson, P. E. 2003 Ultramicroscopy 96, 239.Google Scholar
Batson, P. E., Dellby, N. and Krivanek, O. L. 2002 Nature 418, 617.CrossRefGoogle Scholar
Béché, A., Clément, L. and Rouvière, J.-L. 2010 J. Phys. Conf. Ser. 209, 012063.Google Scholar
Bellucci, S. 2005 Nucl. Instr. Meth. Phys. Res. B 234, 57.Google Scholar
Bellucci, S., Biryukov, V. M., Chesnokov, Yu. A., Guidi, V. and Scandale, W. 2003 Phys. Rev. ST Accel. Beams 6, 033502.Google Scholar
Biryukov, V. M. and Bellucci, S. 2002 Phys. Lett. B 542, 111.Google Scholar
Chao, A. 1993 Physics of Collective Beam Instability in High Energy Accelerators. New York: John Wiley.Google Scholar
De Nicola, S., Fedele, R., Man'ko, V. I. and Miele, G. 1995 Phys. Scr. 52, 191.CrossRefGoogle Scholar
Fedele, R. and Anderson, D. 2000 J. Opt. B: Quant. Semicl. Opt. 2, 207.Google Scholar
Fedele, R., Galluccio, F., Man'ko, V. I. and Miele, G. 1995 Phys. Lett. A 209, 263.Google Scholar
Fedele, R., Galluccio, F. and Miele, G. 1994a Phys. Lett. A 185, 93.Google Scholar
Fedele, R. and Miele, G. 1991 Nuovo Cim. D 13, 1527.CrossRefGoogle Scholar
Fedele, R. and Miele, G. 1992 Phys. Rev. A 46, 6634.CrossRefGoogle Scholar
Fedele, R., Miele, G. and Palumbo, L. 1994b Phys. Lett. A 194, 113.Google Scholar
Fedele, R., Miele, G., Palumbo, L. and Vaccaro, V. G. 1993 Phys. Lett. A 179, 407.Google Scholar
Fedele, R. and Shukla, P. K. 1992 Phys. Rev. A 45, 4045.Google Scholar
Fedele, R., Tanjia, F., De Nicola, S., Jovanovic, D. and Shukla, P. K. 2012a Phys. Plasmas 19, 102106.Google Scholar
Fedele, R., Tanjia, F., De Nicola, S., Jovanovic, D. and Shukla, P. K. 2012b AIP Conf. Proc. 1421, 212.CrossRefGoogle Scholar
Fedele, R., Tanjia, F., De Nicola, S., Shukla, P. K. and Jovanovic, D. 2011 Self-consistent thermal wave model description of the transverse dynamics for relativistic charged particle beams in magnetoactive plasmas. In: Proceedings of the 38th EPS Conference on Plasma Physics, Vol. 35G (eds. Becoulet, A., Hoang, T. and Stroth, U.) Strasbourg, France: European Physical Society.Google Scholar
Fedele, R. and Wilson, E. J. N. 1990 Nuovo Cim. D 12, 1497.Google Scholar
Firouz-Abadi, R. D. and Hosseinian, A. R. 2012 Theor. App. Mech. Lett. 2, 031012.Google Scholar
Glaser, P. 1952 Grundlagen der Elekronenoptik. Vienna, Austria: Springer-Verlag.CrossRefGoogle Scholar
Gloge, D. and Marcuse, D. 1969 J. Opt. Soc. Am. A 59, 1629.CrossRefGoogle Scholar
Grivet, P. and Septier, A. 1972 Electron Optics. Oxford, UK: Pergamon.Google Scholar
Guignard, G.et al. (ed.) 2000 3 TeV e +e – Linear Collider Based on CLIC Technology. CERN Report CERN-2000-008. Geneva, Switzerland: European Organization for Nuclear Research.Google Scholar
Hartree, D. R. 1957 The Calculation of Atomic Structures. New York, NY: John Wiley.Google Scholar
Hawkes, P. 1972 Quadrupole Optics. Springer Tracts in Modern Physics, Vol. 42. Berlin, Germany: Springer-Verlag.Google Scholar
Jagannathan, R. 1990 Phys. Rev. A 42, 6674.Google Scholar
Jagannathan, R., Simon, R., Sudarshan, E. and Mukunda, N. 1989 Phys. Lett. A 134, 457.CrossRefGoogle Scholar
Jang, J., Cho, Y. and Kwon, H. 2007 Phys. Lett. A 366, 246.CrossRefGoogle Scholar
Jang, J., Cho, Y. and Kwon, H. 2010 Nucl. Instrum. Meth. A 624, 578.CrossRefGoogle Scholar
Johannisson, P.et al. 2004 Phys. Rev. E 69, 066501.Google Scholar
Jovanovic, D., Fedele, R., Tanjia, F., De Nicola, S. and Belic, M. 2012 Eur. Phys. Lett. 100, 5502.CrossRefGoogle Scholar
Jovanovic, D., Fedele, R., Tanjia, F., De Nicola, S. and Belic, M. 2013 J. Plasma Physics 79, 397. doi: 10.1017/S0022377813000111.Google Scholar
Khan, S. A. and Jagannathan, R. 1995 Phys. Rev. E 51, 2510.Google Scholar
Klemperer, O. and Barnett, M. 1971 Electron Optics. London: Cambridge University Press.Google Scholar
Lawson, J. 1988 The Physics of Charged-Particle Beams, 2nd edn.Oxford, UK: Clarendon Press.Google Scholar
Liu, Z., Kinsey, R. J., Durbin, S. M. and Ringer, S. P. 2007 Microsc. Res. Tech. 70, 205.CrossRefGoogle Scholar
McMorran, B., Agrawal, A., Anderson, I., Herzing, A. and Lezec, H. 2011 Science 331, 192.Google Scholar
Redaelli, S.et al. 2003 Colliding nanobeams in CLIC with magnets stabilized to the sub-NM level. In: Proceedings of the 2003 Particle Accelerator Conference, Portland, OR, 12–16 May 2003 (ed. Chew, J., Lucas, P. and Webber, S.). New York, NY: IEEE, 665 pp.Google Scholar
Redaelli, S.et al. 2004 CLIC magnet stabilization studies. In: Proceedings of LINAC 2004, Lbeck, Germany, 16–20 August 2004, 483 pp, http://accelconf.web.cern.ch/accelconf/l04/Google Scholar
Sacherer, F. J. 1971 IEEE Trans. Nucl. Sci. NS-18, 1105.Google Scholar
Saito, N. and Ogata, A. 2003 Phys. Plasmas 10, 3358.Google Scholar
Saito, Y. and Uemura, S. 2000 Carbon 38, 169.Google Scholar
Sayed, S. Y., Wang, F., Malac, M., Egerton, R. and Buriak, J. 2008 Microsc. Microanal. 14, 302.Google Scholar
Sturrock, P. 1955 Static and Dynamic Electron Optics: An Account of Focusing in Lens, Deflector and Accelerator. London: Cambridge University Press.Google Scholar
Su, J. J., Katsouleas, T., Dawson, J. M. and Fedele, R. 1990 Phys. Rev. A 41, 3321.Google Scholar
Tanjia, F., De Nicola, S., Fedele, R., Shukla, P. K. and Jovanovic, D. 2011 Quantumlike description of the nonlinear and collective effects on relativistic electron beams in strongly magnetized plasmas. In: Proceedings of the 38th EPS Conference on Plasma Physics, Vol. 35G (ed. Becoulet, A., Hoang, T. and Stroth, U.. Strasbourg, France: European Physics Society.Google Scholar
Yang, X. and Lim, C. W. 2009 Sci. China Ser. E-Tech. Sci. 52, 617.Google Scholar
Zimmermann, F., Braun, H. and Soby, L. 2006 CLIC R&D. Presented at the 36th ICFA Advanced Beam Dynamics Workshop on Nano Scale Beams (‘Nanobeam 2005’), Kyoto, Japan, 17–21 October 2005 (CERN-AB-2006-012, CLIC Note 652). Geneva, Switzerland: CERN.Google Scholar
Zobelli, A.et al. 2006 Nano Lett. 6, 195.Google Scholar
Zobelli, A.et al. 2007 Phys. Rev. B 75, 245402.Google Scholar
Zobelli, A.et al. 2008 Phys. Rev. B 77, 045410.Google Scholar
Zworykin, V., Morton, G., Ramberg, E., Hillier, J. and Vance, A. 1945 Electron Optics and the Electron Microscope. New York, NY: John Wiley.Google Scholar