Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T12:29:26.228Z Has data issue: false hasContentIssue false

Weakly dissipative ion acoustic solitary waves in a dusty plasma: roles of dust charge variation, ion loss and ionization

Published online by Cambridge University Press:  01 August 2007

SAMIRAN GHOSH*
Affiliation:
Government College of Engineering and Textile Technology, 4, Cantonment Road, Berhampore, Murshidabad 742101, West Bengal, India (sran_g@yahoo.com)

Abstract

The nonlinear propagation characteristics of dust ion acoustic waves in the presence of weak dissipations arising due to the low rates (compared to the ion oscillation frequency) of ionization, ion loss and dust charging are investigated. It is found that the ion acoustic solitary wave in such a dusty plasma is weakly dissipative in nature and is governed by a modified form of the Korteweg–de Vries equation. The analytical solution reveals that the ionization has a destabilizing effect, whereas ion loss and dust charge variation play a stabilizing role to control the ionization instability.

Type
Papers
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Tsytovich, V. N., Morfill, G. E. and Thomas, H. 2002 Plasma Phys. Reports 28, 623.CrossRefGoogle Scholar
[2]Akhiezer, A. I., Akhiezer, I. A. and Angeliko, V. V. 1970 Sov. Phys. JETP 30, 476.Google Scholar
Thomson, J. C., D'Angelo, N. and Merlino, R. L. 1990 J. Phys. D: Appl. Phys. 23 682.Google Scholar
[3]Shukla, P. K. and Silin, V. P. 1992 Phys. Scripta 45, 508.CrossRefGoogle Scholar
Barkan, A., D'Angelo, N. and Merlino, R. L. 1995 Planet. Space Sci. 44, 239.CrossRefGoogle Scholar
Merlino, R. L., Barkan, A., Thompson, C. and D'Angelo, N. 1998 Phys. Plasmas 5, 1607.CrossRefGoogle Scholar
[4]D'Angelo, N. 1997 Phys. Plasmas 4, 3422.CrossRefGoogle Scholar
D'Angelo, N. 1998 Phys. Plasmas 5, 3155.CrossRefGoogle Scholar
[5]Rao, N. N., Shukla, P. K. and Yu, M. Y. 1990 Planet. Space Sci. 38, 543.CrossRefGoogle Scholar
Barkan, A., Merlino, R. and D'Angelo, N. 1995 Phys. Plasmas 2, 3563.CrossRefGoogle Scholar
Melandso, F., Asllaksen, T. and Havnes, O. 1993 Planet. Space Sci. 41, 321.CrossRefGoogle Scholar
[6]Goree, J., Morfill, G. E., Tsytovich, V. N. and Vladimirov, S. V. 1999 Phys. Rev. E 59, 7055.Google Scholar
Ivlev, A. V. and Morfill, G. E. 2000 Phys. Plasmas 7, 1094.CrossRefGoogle Scholar
Avinash, K. 2001 Phys. Plasmas 8, 351.CrossRefGoogle Scholar
Wang, X., Bhattacharjee, A., Gou, S. K. and Goree, J. 2001 Phys. Plasmas 8, 5018.CrossRefGoogle Scholar
[7]Prabhuram, G. and Goree, J. 1996 Phys. Plasmas 3, 1212.CrossRefGoogle Scholar
[8]Samsonov, D. and Goree, J. 1999 Phys. Rev. E 59, 1047.Google Scholar
[9]Popel, S. I., Yu, M. Y. and Tsytovich, V. N. 1996 Phys. Plasmas 3, 4313.CrossRefGoogle Scholar
[10]Nakamura, Y., Bailung, H. and Shukla, P. K. 1999 Phys. Rev. Lett. 83, 1602.CrossRefGoogle Scholar
[11]Luo, Q. Z., D'Angelo, N. and Merlino, R. L. 1999 Phys. Plasmas 6, 3345.CrossRefGoogle Scholar
[12]Ghosh, S., Sarkar, S., Khan, M. and Gupta, M. R. 2000 Phys. Lett. A 274, 162.CrossRefGoogle Scholar
[13]Ghosh, S., Sarkar, S., Khan, M. and Gupta, M. R. 2000 Phys. Plasmas 7, 3594.CrossRefGoogle Scholar
Ghosh, S., Chaudhuri, T. K., Sarkar, S., Khan, M. and Gupta, M. R. 2001 Phys. Rev. E 65, 037401.Google Scholar
[14]Popel, S. I., Golub, A. P., Losseva, T. V., Ivlev, A. V., Khrapak, S. A. and Morfill, G. 2003 Phys. Rev. E 67, 056402.Google Scholar
[15]Kompaneetz, R., Tsytovich, V. and Morfill, G. 2004 IEEE Trans. Plasma Sci. 32, 561.CrossRefGoogle Scholar
[16]Ghosh, S. 2005 Phys. Lett. A 337, 425; J. Plasma Phys. 71, 519.CrossRefGoogle Scholar