Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T21:49:01.802Z Has data issue: false hasContentIssue false

Index sets in Ershov's hierarchy1

Published online by Cambridge University Press:  12 March 2014

Jacques Grassin*
Affiliation:
Universite d'Orleans, 45045 Orleans Cedex, France

Extract

This work is an attempt to characterize the index sets of classes of recursively enumerable sets which are expressible in terms of open sets in the Baire topology on the power set of the set N of natural numbers, usual in recursion theory. Let be a class of subsets of N and be the set of indices of recursively enumerable sets Wх belonging to .

A well-known theorem of Rice and Myhill (cf. [5, p. 324, Rice-Shapiro Theorem]) states that is recursively enumerable if and only ifis a r.e. open set. In this case, note that if is not empty and does not contain all recursively enumerable sets, is a complete set. This theorem will be partially extended to classes which are boolean combinations of open sets by the following:

(i) There is a canonical boolean combination which represents, namely the shortest among boolean combinations which represent.

(ii) The recursive isomorphism type of depends on the length n of this canonical boolean combination (and trivial properties of ); for instance, is recursively isomorphic (in the particular case where is a boolean combination of recursive open sets) to an elementary set combination Yn or Un, constructed from {х ∣ х Wх) and depending on the length n. We can say also that is a complete set in the sense of Ershov's hierarchy [1] (in this particular case).

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 1974

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

I am grateful to Professor Reznikoff for criticisms and encouragement during the realization of this work.

References

[1]Ershov, Y., A hierarchy of sets. I, Algebra and logic, vol. 7 (1968), pp. 2543; translated from Algebra i logika, vol. 7, No. 1 (1968), pp. 47–74.CrossRefGoogle Scholar
[2]Hay, L., Isomorphism types of index sets of partial recursive functions, Proceedings of the American Mathematical Society, vol. 17 (1966), pp. 106110.CrossRefGoogle Scholar
[3]Hay, L., Index sets of finite classes of recursively enumerable sets, this Journal, vol. 34 (1969), pp. 3944.Google Scholar
[4]Hay, L., A discrete chain of degrees of index sets, this Journal, vol. 37 (1972), pp. 139150.Google Scholar
[5]Rogers, H., Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.Google Scholar