Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T21:34:59.005Z Has data issue: false hasContentIssue false

O-minimal spectra, infinitesimal subgroups and cohomology

Published online by Cambridge University Press:  12 March 2014

Alessandro Berarducci*
Affiliation:
Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy. E-mail: berardu@mail.dm.unipi.it URL: www.dm.unipi.it/~berardu

Abstract

By recent work on some conjectures of Pillay, each definably compact group G in a saturated o-minimal expansion of an ordered field has a normal “infinitesimal subgroup” G00 such that the quotient G/G00, equipped with the “logic topology”, is a compact (real) Lie group. Our first result is that the functor GG/G00 sends exact sequences of definably compact groups into exact sequences of Lie groups. We then study the connections between the Lie group G/G00 and the o-minimal spectrum of G. We prove that G/G00 is a topological quotient of . We thus obtain a natural homomorphism Ψ* from the cohomology of G/G00 to the (Čech-)cohomology of . We show that if G00 satisfies a suitable contractibility conjecture then is acyclic in Čech cohomology and Ψ is an isomorphism. Finally we prove the conjecture in some special cases.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Berarducci, A., Zero-groups and maximal tori, Logic Colloquium '04 (Andretta, A., Kearnes, K., and Zambella, D., editors), Lecture Notes in Logic, vol. 29, ASL, 2007, pp. 3345.Google Scholar
[2]Berarducci, A. and Otero, M., Intersection theory for o-minimal manifolds, Annals of Pure and Applied Logic, vol. 107 (2001), no. 1-3, pp. 87119.CrossRefGoogle Scholar
[3]Berarducci, A., Otero, M., Peterzil, Y., and Pillay, A., A descending chain condition for groups definable in o-minimal structures, Annals of Pure and Applied Logic, vol. 134 (2005), pp. 303313.CrossRefGoogle Scholar
[4]Bredon, G. E., Sheaf theory, second ed., Graduate Texts in Mathematics, vol. 170, Springer-Verlag, New York, 1997.CrossRefGoogle Scholar
[5]Carral, M. and Coste, M., Normal spectral spaces and their dimension, Journal of Pure and Applied Algebra, vol. 30 (1983), pp. 227235.CrossRefGoogle Scholar
[6]Coste, M. and Roy, M.-F., La topologie du Spectre Reel, Ordered fields and real algebraic geometry (Dubois, D. W. and Recio, T., editors), Contemporary Mathematics, vol. 8, American Mathematical Society, 1982, pp. 2759.CrossRefGoogle Scholar
[7]Delfs, H., Kohomologie affiner semialgebraischer Räume, Dissertation, Regensburg, 1980.Google Scholar
[8]Delfs, H., The homotopy axiom in semialgebraic cohomology, Journal für die reine und angewandte Mathematik, vol. 355 (1985), pp. 108128.Google Scholar
[9]Delfs, H., Homology of locally semialgebraic spaces, Lecture Notes in Mathematics, vol. 1484, Springer-Verlag, Berlin, 1991.CrossRefGoogle Scholar
[10]Delfs, H. and Knebusch, M., On the homology of algebraic varieties over real closed fields, Journal für die reine und angewandte Mathematik, vol. 335 (1982), pp. 122163.Google Scholar
[11]Edmundo, M., A remark on divisibility of definable groups, Mathematical Logic Quarterly, vol. 51 (2005), no. 6, pp. 639641.CrossRefGoogle Scholar
[12]Edmundo, M., Jones, G. O., and Peatfield, N. J., Sheaf cohomology in o-minimal structures, Journal of Mathematical Logic, vol. 6 (2006), no. 2, pp. 163179.CrossRefGoogle Scholar
[13]Edmundo, M. and Otero, M., Definably compact abelian groups, Journal of Mathematical Logic, vol. 4 (2004), no. 2, pp. 163180.CrossRefGoogle Scholar
[14]Godement, R., Topologie algébrique et théorie des faisceaux, Actualités scientifiques et industrielles, vol. XIII, Publications de l'Institut de Mathématique de l'Université de Strasbourg, no. 1252, Hermann, Paris, troisième ed., 1973.Google Scholar
[15]Halmos, P. R., Measure theory, Springer-Verlag, 1974.Google Scholar
[16]Hrushovski, E., Peterzil, Y., and Pillay, A., Groups, measures and the NIP, Journal of the American Mathematical Society, (2007), pp. 134, Article electronically published.Google Scholar
[17]Knebusch, M., Semialgebraic topology in the last ten years, Real algebraic geometry (Rennes, 1991), Lecture Notes in Mathematics, vol. 1524, Springer, Berlin, 1992, pp. 136.CrossRefGoogle Scholar
[18]Lane, S. Mac, Homology, reprint of the first ed., Die Grundlehren der mathematischen Wissenschaften, vol. 114, Springer-Verlag, 1967.Google Scholar
[19]Lascar, D. and Pillay, A., Hyperimaginaries and automorphism groups, this JOurnal, vol. 66 (2001), pp. 127143.Google Scholar
[20]Munkres, J. R., Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA, 1984.Google Scholar
[21]Otero, M., A survey on groups definable in o-minimal structures, preprint, 2006.Google Scholar
[22]Prterzil, Y. and Pillay, A., Generic sets in definably compact groups, Fundamenta Mathematicae, vol. 193 (2007), pp. 153170.CrossRefGoogle Scholar
[23]Peterzil, Y., Pillay, A., and Starchenko, S., Linear groups definable in o-minimal structures, Journal of Algebra, vol. 247 (2002), no. 1, pp. 123.CrossRefGoogle Scholar
[24]Peterzil, Y. and Starchenko, S., Uniform definability of the Weiestrass P -functions and generalized tori of dimension one, Selecta Mathematica, New Series, vol. 10 (2004), pp. 525550.CrossRefGoogle Scholar
[25]Peterzil, Y. and Steinhorn, C., Definable compactness and definable subgroups of o-minimal groups, Journal of the London Mathematical Society, vol. 59 (1999), pp. 769786.CrossRefGoogle Scholar
[26]Pillay, A., On groups and rings definable in o-minimal structures, Journal of Pure and Applied Algebra, vol. 53 (1988), pp. 239255.CrossRefGoogle Scholar
[27]Pillay, A., Sheaves of continuous definable functions, this Journal, vol. 53 (1988), no. 4, pp. 11651169.Google Scholar
[28]Pillay, A., Type-definability, compact Lie groups, and o-minimality, Journal of Mathematical Logic, vol. 4 (2004), pp. 147162.CrossRefGoogle Scholar
[29]Razeni, V., One-dimensional groups over an o-minimal structure, Annals of Pure and Applied Logic, vol. 53 (1991), no. 3, pp. 269277.CrossRefGoogle Scholar
[30]Shelah, S., Minimal bounded index subgroup for dependent theories, preprint, 2005, ArXiv: math. L0/0603652vl.Google Scholar
[31]Spanier, E. H., Algebraic topology, Springer-Verlag, New York-Berlin, 1981, corrected reprint.CrossRefGoogle Scholar
[32]van den Dries, L., Tame topology and o-minimal structures, London Mathematical Society Lecture Notes, vol. 248, Cambridge University Press, 1998.CrossRefGoogle Scholar
[33]Woerheide, A., O-minimal homology, Ph.D. thesis, University of Illinois at Urbana–Champaign, 1996.Google Scholar