Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T00:21:28.563Z Has data issue: false hasContentIssue false

Groups sharing some varietal properties with supersoluble groups

Published online by Cambridge University Press:  09 April 2009

Rolf Brandl
Affiliation:
Mathematisches InstitutAm Hubland12 D-8700 Würzburg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this note a formation U is considered which can be defined by a sequence of laws which ‘almost’ hold in every finite supersoluble group. The class U contains all finite supersoluble groups and each group in U has a Sylow tower.

It is shown that a finite group belongs to U if and only if all of its subgroups with nilpotent commutator subgroup are supersoluble. A more general result concerning classes of this type finally proves that U is a saturated formation.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1983

References

[1]Brandi, R., ‘Zur Theone der untergruppenabgeschlossenen Formationen: Endliche Varietäten,’ J. Algebra 73 (1981), 122.CrossRefGoogle Scholar
[2]Carter, R., Fischer, B. and Hawkes, T., ‘Extreme classes of finite groups,’ J. Algebra 9 (1968), 285313.CrossRefGoogle Scholar
[3]Doerk, K., ‘Zur Theorie der Formationen endlicher auflösbarer Gruppen,’ J. Algebra 13 (1969). 345373.CrossRefGoogle Scholar
[4]Huppert, B., Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York, (1967).CrossRefGoogle Scholar
[5]Napolitani, F., ‘Sui gruppi finiti privi di sottogruppi supersolubili non speciali,’ Rend. Sem. Mat. Univ. Padova 39 (1967), 291295.Google Scholar
[6]Scarselli, A., ‘Sui gruppi a sottogruppi supersolubili abeliani,’ Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 60 (1976), 564569.Google Scholar
[7]Scarselli, A., ‘SA-gruppi e SN-gruppi,’ Boll. Un. Mat. Ital. A (5) 14 (1977), 174182.Google Scholar