No CrossRef data available.
Article contents
INVARIANT SETS AND NORMAL SUBGROUPOIDS OF UNIVERSAL ÉTALE GROUPOIDS INDUCED BY CONGRUENCES OF INVERSE SEMIGROUPS
Published online by Cambridge University Press: 13 April 2021
Abstract
For a given inverse semigroup, one can associate an étale groupoid which is called the universal groupoid. Our motivation is studying the relation between inverse semigroups and associated étale groupoids. In this paper, we focus on congruences of inverse semigroups, which is a fundamental concept for considering quotients of inverse semigroups. We prove that a congruence of an inverse semigroup induces a closed invariant set and a normal subgroupoid of the universal groupoid. Then we show that the universal groupoid associated to a quotient inverse semigroup is described by the restriction and quotient of the original universal groupoid. Finally we compute invariant sets and normal subgroupoids induced by special congruences including abelianization.
Keywords
MSC classification
- Type
- Research Article
- Information
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
- Copyright
- © Australian Mathematical Publishing Association Inc. 2021
Footnotes
Communicated by Aidan Sims
This work was supported by JSPS KAKENHI 20J10088.