Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T13:48:19.808Z Has data issue: false hasContentIssue false

A NOTE ON BUNDLE GERBES AND INFINITE-DIMENSIONALITY

Published online by Cambridge University Press:  22 March 2011

MICHAEL MURRAY*
Affiliation:
School of Mathematical Sciences, University of Adelaide, Adelaide SA 5005, Australia (email: michael.murray@adelaide.edu.au)
DANNY STEVENSON
Affiliation:
Department of Mathematics, University of Glasgow, 15 University Gardens, Glasgow G12 8QW, UK (email: d.stevenson@maths.gla.ac.uk)
*
For correspondence; e-mail: michael.murray@adelaide.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let (P,Y ) be a bundle gerbe over a fibre bundle YM. We show that if M is simply connected and the fibres of YM are connected and finite-dimensional, then the Dixmier–Douady class of (P,Y ) is torsion. This corrects and extends an earlier result of the first author.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Publishing Association Inc. 2011

Footnotes

The first author acknowledges the support of the Australian Research Council.

References

[1]Atiyah, M. and Segal, G., ‘Twisted K-theory’, Ukr. Mat. Visn. 1 (2004), 287330.Google Scholar
[2]Bott, R. and Tu, L. W., Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, 82 (Springer, New York–Berlin, 1982).CrossRefGoogle Scholar
[3]Bouwknegt, P., Carey, A. L., Mathai, V., Murray, M. K. and Stevenson, D., ‘Twisted K-theory and K-theory of bundle gerbes’, Comm. Math. Phys. 228 (2002), 1745.CrossRefGoogle Scholar
[4]Brylinski, J.-L., Loop Spaces, Characteristic Classes and Geometric Quantization, Progress in Mathematics, 107 (Birkhäuser, Boston, MA, 1993).CrossRefGoogle Scholar
[5]Carey, A. L., Mickelsson, J. and Murray, M. K., ‘Bundle gerbes applied to quantum field theory’, Rev. Math. Phys. 12 (2000), 6590.CrossRefGoogle Scholar
[6]Carey, A. L. and Murray, M. K., ‘Holonomy and the Wess–Zumino term’, Lett. Math. Phys. 12 (1986), 323328.CrossRefGoogle Scholar
[7]Gotay, M. J., Lashof, R., Śniatycki, J. and Weinstein, A., ‘Closed forms on symplectic fibre bundles’, Comment. Math. Helv. 58 (1983), 617621.CrossRefGoogle Scholar
[8]Johnson, S., ‘Constructions with bundle gerbes’, PhD Thesis, University of Adelaide, 2003, available as arXiv:math/0312175v1.Google Scholar
[9]Murray, M. K., ‘Bundle gerbes’, J. London Math. Soc. 54 (1996), 403416.CrossRefGoogle Scholar
[10]Murray, M. K., ‘An introduction to bundle gerbes’, in: The Many Facets of Geometry, A Tribute to Nigel Hitchin (Oxford University Press, Oxford, 2010), pp. 237260.CrossRefGoogle Scholar
[11]Murray, M. K. and Stevenson, D., ‘Bundle gerbes: stable isomorphism and local theory’, J. London Math. Soc. 62 (2002), 925937.CrossRefGoogle Scholar
[12]Murray, M. K. and Stevenson, D., ‘The basic bundle gerbe on unitary groups’, J. Geom. Phys. 58(11) (2008), 15711590.CrossRefGoogle Scholar
[13]Pressley, A. and Segal, G., Loop Groups, Oxford Mathematical Monographs (The Clarendon Press, Oxford, 1986).Google Scholar