Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T10:49:41.133Z Has data issue: false hasContentIssue false

COMPARISON OF KUMMER LOGARITHMIC TOPOLOGIES WITH CLASSICAL TOPOLOGIES

Published online by Cambridge University Press:  27 July 2021

Heer Zhao*
Affiliation:
Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann-Straße, 45117 Essen, Germany

Abstract

We compare the Kummer flat (resp., Kummer étale) cohomology with the flat (resp., étale) cohomology with coefficients in smooth commutative group schemes, finite flat group schemes, and Kato’s logarithmic multiplicative group. We are particularly interested in the case of algebraic tori in the Kummer flat topology. We also make some computations for certain special cases of the base log scheme.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Artin, M., Grothendieck Topologies: Notes on a Seminar (Harvard University Dept. of Mathematics, Cambridge, USA, Springer, 1962).Google Scholar
Brion, M., Commutative algebraic groups up to isogeny, Doc. Math. 22 (2017), 679725.CrossRefGoogle Scholar
Demazure, M. and Gabriel, P.G., algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. (French) Avec un appendice Corps de classes local par Michiel Hazewinkel. Masson & Cie, Éditeur, Paris, North-Holland Publishing Co., Amsterdam, 1970. xxvi+700 pp.Google Scholar
Gille, P. and Polo, P., editors, Schémas en groupes (SGA 3). Tome I. Propriétés générales des schémas en groupes, Documents Mathématiques (Paris), 7 (Société Mathématique de France, Paris, 2011). Revised and annotated edition of the 1970 French original.Google Scholar
Grothendieck, A., Le groupe de Brauer. III. Exemples et compléments, in Dix exposés sur la cohomologie des schémas, Advanced Studies in Pure Mathematics, 3, pp. 88188 (North-Holland, Amsterdam, 1968).Google Scholar
Illusie, L., Logarithmic spaces (according to K. Kato), in Barsotti Symposium in Algebraic Geometry, pp. 183203 (Academic Press, San Diego, CA, 1994).CrossRefGoogle Scholar
Illusie, L., An overview of the work of K. Fujiwara, K. Kato, and C. Nakayama on logarithmic étale cohomology, Astérisque 279 (2002), 271322.Google Scholar
Kato, K., ‘Logarithmic structures of Fontaine-Illusie. II’, Preprint, 2019, https://arxiv.org/abs/1905.10678.Google Scholar
Kato, K. and Nakayama, C., Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over $C$ , Kodai Math. J. 22(2) (1999), 161186.CrossRefGoogle Scholar
Milne, J. S., Étale Cohomology, Princeton Mathematical Series, 33 (Princeton University Press, Princeton, NJ, 1980).Google Scholar
Milne, J. S., Arithmetic Duality Theorems, 2nd ed. (BookSurge, Charleston, SC, 2006).Google Scholar
Nizioł, W., $K$ -theory of log-schemes. I, Doc. Math. 13 (2008), 505551.CrossRefGoogle Scholar
Serre, J.-P., Galois Cohomology, Springer Monographs in Mathematics (Springer-Verlag, Berlin, 2002). Translated from the French by P. Ion and revised by the author.Google Scholar
Demazure, M. and Grothendieck, A., editors, Schémas en groupes, II: Groupes de type multiplicatif, et structure des schémas en groupes généraux: Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), Lecture Notes in Mathematics, 152 (Springer-Verlag, Berlin, 1970).Google Scholar
The Stacks Project authors, ‘The Stacks Project, 2021, https://stacks.math.columbia.edu.Google Scholar
Swan, R. G., Cup products in sheaf cohomology, pure injectives, and a substitute for projective resolutions, J. Pure Appl. Algebra 144(2) (1999), 169211.CrossRefGoogle Scholar