Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T01:57:06.889Z Has data issue: false hasContentIssue false

Be Fit, Be Sharp, Be Well: The Case for Exercise as a Treatment for Cognitive Impairment in Late-life Depression

Published online by Cambridge University Press:  22 June 2021

Vonetta M. Dotson*
Affiliation:
Department of Psychology, Georgia State University, Atlanta, USA Gerontology Institute, Georgia State University, Atlanta, USA
Andrew M. Gradone
Affiliation:
Department of Psychology, Georgia State University, Atlanta, USA
Hannah R. Bogoian
Affiliation:
Department of Psychology, Georgia State University, Atlanta, USA
Lex R. Minto
Affiliation:
Department of Psychology, Georgia State University, Atlanta, USA
Zinat Taiwo
Affiliation:
Department of Psychology, Georgia State University, Atlanta, USA
Zachary N. Salling
Affiliation:
Department of Psychology, Georgia State University, Atlanta, USA
*
*Correspondence and reprint requests to: Vonetta M. Dotson, Ph.D., Department of Psychology, Georgia State University, P.O. Box 5010, Atlanta, GA30302-5010, USA. Phone: +1 (404) 413-6298. Fax: +1 (404) 413-6207. Email: vdotson1@gsu.edu.

Abstract

Objective:

To lay out the argument that exercise impacts neurobiological targets common to both mood and cognitive functioning, and thus more research should be conducted on its use as an alternative or adjunctive treatment for cognitive impairment in late-life depression (LLD).

Method:

This narrative review summarizes the literature on cognitive impairment in LLD, describes the structural and functional brain changes and neurochemical changes that are linked to both cognitive impairment and mood disruption, and explains how exercise targets these same neurobiological changes and can thus provide an alternative or adjunctive treatment for cognitive impairment in LLD.

Results:

Cognitive impairment is common in LLD and predicts recurrence of depression, poor response to antidepressant treatment, and overall disability. Traditional depression treatment with medication, psychotherapy, or both, is not effective in fully reversing cognitive impairment for most depressed older adults. Physical exercise is an ideal treatment candidate based on evidence that it 1) is an effective treatment for depression, 2) enhances cognitive functioning in normal aging and in other patient populations, and 3) targets many of the neurobiological mechanisms that underlie mood and cognitive functioning. Results of the limited existing clinical trials of exercise for cognitive impairment in depression are mixed but overall support this contention.

Conclusions:

Although limited, existing evidence suggests exercise may be a viable alternative or adjunctive treatment to address cognitive impairment in LLD, and thus more research in this area is warranted. Moving forward, additional research is needed in large, diverse samples to translate the growing research findings into clinical practice.

Type
Critical Review
Copyright
Copyright © INS. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexopoulos, G.S., Kiosses, D.N., Heo, M., Murphy, C.F., Shanmugham, B., & Gunning-Dixon, F. (2005). Executive dysfunction and the course of geriatric depression. Biological Psychiatry, 58(3), 204210. doi: 10.1016/j.biopsych.2005.04.024 Google ScholarPubMed
Alexopoulos, G.S., Meyers, B.S., Young, R.C., Campbell, S., Silbersweig, D., & Charlson, M. (1997). ‘Vascular depression’hypothesis. Archives of General Psychiatry, 54(10), 915922.CrossRefGoogle Scholar
Alexopoulos, G.S., Meyers, B.S., Young, R.C., Kalayam, B., Kakuma, T., Gabrielle, M., … Hull, J. (2000). Executive dysfunction and long-term outcomes of geriatric depression. Archives of General Psychiatry, 57(3), 285290. doi: 10.1001/archpsyc.57.3.285 CrossRefGoogle ScholarPubMed
Alexopoulos, G.S., Meyers, B.S., Young, R.C., Mattis, S., & Kakuma, T. (1993). The course of geriatric depression with “reversible dementia”: a controlled study. American Journal of Psychiatry, 150(11), 16931699. doi: 10.1176/ajp.150.11.1693 Google ScholarPubMed
Amare, A.T., Schubert, K.O., & Baune, B.T. (2017). Pharmacogenomics in the treatment of mood disorders: Strategies and Opportunities for personalized psychiatry. EPMA Journal, 8(3), 211227. doi: 10.1007/s13167-017-0112-8 CrossRefGoogle ScholarPubMed
Audet, M.-C., & Anisman, H. (2013). Interplay between pro-inflammatory cytokines and growth factors in depressive illnesses. Frontiers in Cellular Neuroscience, 7, 6868. doi: 10.3389/fncel.2013.00068 CrossRefGoogle ScholarPubMed
Aziz, R., & Steffens, D. (2017). Overlay of late-Life depression and cognitive impairment. Focus: The Journal of Lifelong Learning in Psychiatry, 15(1), 3541. doi: 10.1176/appi.focus.20160036 CrossRefGoogle ScholarPubMed
Ballmaier, M., Sowell, E.R., Thompson, P.M., Kumar, A., Narr, K.L., Lavretsky, H., … Toga, A.W. (2004). Mapping brain size and cortical gray matter changes in elderly depression. Biological Psychiatry, 55(4), 382389.CrossRefGoogle ScholarPubMed
Barch, D.M., D’Angelo, G., Pieper, C., Wilkins, C.H., Welsh-Bohmer, K., Taylor, W., … Sheline, Y.I. (2012). Cognitive improvement following treatment in late-life depression: relationship to vascular risk and age of onset. American Journal of Geriatric Psychiatry, 20(8), 682690. doi: 10.1097/JGP.0b013e318246b6cb CrossRefGoogle ScholarPubMed
Berwid, O.G., & Halperin, J.M. (2012). Emerging support for a role of exercise in attention-deficit/hyperactivity disorder intervention planning. Current Psychiatry Reports, 14(5), 543551. doi: 10.1007/s11920-012-0297-4 CrossRefGoogle ScholarPubMed
Bhalla, R.K., Butters, M.A., Mulsant, B.H., Begley, A.E., Zmuda, M.D., Schoderbek, B., … Becker, J.T. (2006). Persistence of neuropsychologic deficits in the remitted state of late-life depression. American Journal of Geriatric Psychiatry, 14(5), 419427. doi: 10.1097/01.JGP.0000203130.45421.69 CrossRefGoogle ScholarPubMed
Bischoff-Ferrari, H.A., Vellas, B., Rizzoli, R., Kressig, R.W., da Silva, J.A.P., Blauth, M., … Group, D.-H.R. (2020). Effect of vitamin D supplementation, omega-3 fatty acid supplementation, or a strength-training exercise program on clinical outcomes in older adults: the DO-HEALTH randomized clinical trial. JAMA, 324(18), 18551868. doi: 10.1001/jama.2020.16909 CrossRefGoogle ScholarPubMed
Bora, E., Harrison, B.J., Davey, C.G., Yucel, M., & Pantelis, C. (2012). Meta-analysis of volumetric abnormalities in cortico-striatal-pallidal-thalamic circuits in major depressive disorder. Psychological Medicine, 42(4), 671681. doi: 10.1017/s0033291711001668 CrossRefGoogle ScholarPubMed
Brondino, N., Rocchetti, M., Fusar-Poli, L., Codrons, E., Correale, L., Vandoni, M., … Politi, P. (2017). A systematic review of cognitive effects of exercise in depression. Acta Psychiatrica Scandinavica, 135(4), 285295. doi: 10.1111/acps.12690 CrossRefGoogle ScholarPubMed
Bugg, J.M., & Head, D. (2011). Exercise moderates age-related atrophy of the medial temporal lobe. Neurobiology of Aging, 32(3), 506514. doi: 10.1016/j.neurobiolaging.2009.03.008 CrossRefGoogle ScholarPubMed
Buschert, V., Prochazka, D., Bartl, H., Diemer, J., Malchow, B., Zwanzger, P., & Brunnauer, A. (2019). Effects of physical activity on cognitive performance: A controlled clinical study in depressive patients. European Archives of Psychiatry and Clinical Neuroscience, 269(5), 555563. doi: 10.1007/s00406-018-0916-0 CrossRefGoogle ScholarPubMed
Butters, M.A., Young, J.B., Lopez, O., Aizenstein, H.J., Mulsant, B.H., Reynolds, C.F., 3rd, … Becker, J.T. (2008). Pathways linking late-life depression to persistent cognitive impairment and dementia. Dialogues in Clinical Neuroscience, 10(3), 345357.Google ScholarPubMed
Cassilhas, R.C., Viana, V.A., Grassmann, V., Santos, R.T., Santos, R.F., Tufik, S., & Mello, M.T. (2007). The impact of resistance exercise on the cognitive function of the elderly. Medicine & Science in Sports & Exercise, 39(8), 14011407. doi: 10.1249/mss.0b013e318060111f CrossRefGoogle ScholarPubMed
Chen, F.T., Hopman, R.J., Huang, C.J., Chu, C.H., Hillman, C.H., Hung, T.M., & Chang, Y.K. (2020). The Effect of Exercise Training on Brain Structure and Function in Older Adults: A Systematic Review Based on Evidence from Randomized Control Trials. Journal of Clinical Medicine, 9(4). doi: 10.3390/jcm9040914 CrossRefGoogle ScholarPubMed
Cherbuin, N., Kim, S., & Anstey, K.J. (2015). Dementia risk estimates associated with measures of depression: a systematic review and meta-analysis. BMJ Open, 5(12), e008853. doi: 10.1136/bmjopen-2015-008853 CrossRefGoogle ScholarPubMed
Colcombe, S.J., Erickson, K.I., Raz, N., Webb, A.G., Cohen, N.J., McAuley, E., & Kramer, A.F. (2003). Aerobic fitness reduces brain tissue loss in aging humans. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 58(2), 176180. doi: 10.1093/gerona/58.2.m176 CrossRefGoogle ScholarPubMed
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392(10159), 17891858. doi: 10.1016/S0140-6736(18)32279-7 CrossRefGoogle Scholar
Connors, M.H., Quinto, L., & Brodaty, H. (2018). Longitudinal outcomes of patients with pseudodementia: a systematic review. Psychological Medicine, 111. doi: 10.1017/S0033291718002829 Google ScholarPubMed
Crocco, E.A., Castro, K., & Loewenstein, D.A. (2010). How late-life depression affects cognition: neural mechanisms. Current Psychiatry Reports, 12(1), 3438. doi: 10.1007/s11920-009-0081-2 CrossRefGoogle ScholarPubMed
Diniz, B.S., Butters, M.A., Albert, S.M., Dew, M.A., & Reynolds, C.F., 3rd. (2013). Late-life depression and risk of vascular dementia and Alzheimer’s disease: systematic review and meta-analysis of community-based cohort studies. British Journal of Psychiatry, 202(5), 329335. doi: 10.1192/bjp.bp.112.118307 CrossRefGoogle ScholarPubMed
Diniz, B.S., Reynolds, C.F., 3rd, Begley, A., Dew, M.A., Anderson, S.J., Lotrich, F., … Butters, M.A. (2014). Brain-derived neurotrophic factor levels in late-life depression and comorbid mild cognitive impairment: a longitudinal study. Journal of Psychiatric Research, 49, 96101. doi: 10.1016/j.jpsychires.2013.11.004 CrossRefGoogle ScholarPubMed
Diniz, B.S., Teixeira, A.L., Talib, L.L., Mendonca, V.A., Gattaz, W.F., & Forlenza, O.V. (2010). Serum brain-derived neurotrophic factor level is reduced in antidepressant-free patients with late-life depression. World Journal of Biological Psychiatry, 11(3), 550555. doi: 10.3109/15622970903544620 Google ScholarPubMed
Dotson, V.M., Beydoun, M.A., & Zonderman, A.B. (2010). Recurrent depressive symptoms and the incidence of dementia and mild cognitive impairment. Neurology, 75(1), 2734. doi: 10.1212/WNL.0b013e3181e62124 CrossRefGoogle ScholarPubMed
Dotson, V.M., Davatzikos, C., Kraut, M.A., & Resnick, S.M. (2009). Depressive symptoms and brain volumes in older adults: a longitudinal magnetic resonance imaging study. Journal of Psychiatry & Neuroscience, 34(5), 367.Google ScholarPubMed
Dotson, V.M., & Duarte, A. (2020). The importance of diversity in cognitive neuroscience. Annals of the New York Academy of Sciences, 1464(1), 181191. doi: 10.1111/nyas.14268 Google ScholarPubMed
Dotson, V.M., Hsu, F.C., Langaee, T.Y., McDonough, C.W., King, A.C., Cohen, R.A., … Life Study, G. (2016). Genetic moderators of the impact of physical activity on depressive symptoms. Journal of Frailty & Aging, 5(1), 614. doi: 10.14283/jfa.2016.76 Google ScholarPubMed
Dotson, V.M., McClintock, S.M., Verhaeghen, P., Kim, J.U., Draheim, A.A., Syzmkowicz, S.M., … Wit, L. (2020). Depression and cognitive control across the lifespan: A systematic review and meta-analysis. Neuropsychology Review. doi: 10.1007/s11065-020-09436-6 CrossRefGoogle ScholarPubMed
Dotson, V.M., Resnick, S.M., & Zonderman, A.B. (2008). Differential association of concurrent, baseline, and average depressive symptoms with cognitive decline in older adults. American Journal of Geriatric Psychiatry, 16(4), 318330. doi: 10.1097/JGP.0b013e3181662a9c CrossRefGoogle ScholarPubMed
Dotson, V.M., Szymkowicz, S.M., Kirton, J.W., McLaren, M.E., Green, M.L., & Rohani, J.Y. (2014). Unique and interactive effect of anxiety and depressive symptoms on cognitive and brain function in young and older adults. Journal of Depression and Anxiety, (Suppl 1). doi: 10.4172/2167-1044.S1-003 CrossRefGoogle ScholarPubMed
Dotson, V.M., Zonderman, A.B., Kraut, M.A., & Resnick, S.M. (2013). Temporal relationships between depressive symptoms and white matter hyperintensities in older men and women. International Journal of Geriatric Psychiatry, 28(1), 6674. doi: 10.1002/gps.3791 CrossRefGoogle ScholarPubMed
Drevets, W.C., Price, J.L., & Furey, M.L. (2008). Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Structure & Function, 213(1–2), 93118. doi: 10.1007/s00429-008-0189-x CrossRefGoogle ScholarPubMed
Du, M., Liu, J., Chen, Z., Huang, X., Li, J., Kuang, W., … Bi, F. (2014). Brain grey matter volume alterations in late-life depression. Journal of Psychiatry & Neuroscience, 39(6), 397.CrossRefGoogle ScholarPubMed
Duman, R.S., & Aghajanian, G.K. (2012). Synaptic dysfunction in depression: potential therapeutic targets. Science, 338(6103), 6872. doi: 10.1126/science.1222939 CrossRefGoogle ScholarPubMed
Elderkin-Thompson, V., Mintz, J., Haroon, E., Lavretsky, H., & Kumar, A. (2006). Executive dysfunction and memory in older patients with major and minor depression. Archives of Clinical Neuropsychology, 21(7), 669676. doi: 10.1016/j.acn.2006.05.011 CrossRefGoogle ScholarPubMed
Erickson, K.I., Leckie, R.L., & Weinstein, A.M. (2014). Physical activity, fitness, and gray matter volume. Neurobiology of Aging, 35 Suppl 2, S20S28. doi: 10.1016/j.neurobiolaging.2014.03.034 CrossRefGoogle ScholarPubMed
Firth, J., Rosenbaum, S., Stubbs, B., Gorczynski, P., Yung, A.R., & Vancampfort, D. (2016). Motivating factors and barriers towards exercise in severe mental illness: a systematic review and meta-analysis. Psychological Medicine, 46(14), 28692881. doi: 10.1017/S0033291716001732 Google ScholarPubMed
Franceschi, C., & Campisi, J. (2014). Chronic Inflammation (Inflammaging) and Its Potential Contribution to Age-Associated Diseases. The Journals of Gerontology: Series A, 69(Suppl_1), S4S9. doi: 10.1093/gerona/glu057 CrossRefGoogle ScholarPubMed
Frodl, T., Schüle, C., Schmitt, G., Born, C., Baghai, T., Zill, P., … Meisenzahl, E.M. (2007). Association of the brain-derived neurotrophic factor Val66Met polymorphism with reduced hippocampal volumes in major depression. Archives of General Psychiatry, 64(4), 410416. doi: 10.1001/archpsyc.64.4.410 CrossRefGoogle ScholarPubMed
Gansler, D.A., Suvak, M., Arean, P., & Alexopoulos, G.S. (2015). Role of executive dysfunction and dysexecutive behavior in late-life depression and disability. American Journal of Geriatric Psychiatry, 23(10), 10381045. doi: 10.1016/j.jagp.2015.05.003 CrossRefGoogle ScholarPubMed
Gomez-Pinilla, F., & Nguyen, T.T. (2012). Natural mood foods: the actions of polyphenols against psychiatric and cognitive disorders. Nutritional Neuroscience, 15(3), 127133. doi: 10.1179/1476830511Y.0000000035 CrossRefGoogle ScholarPubMed
Gordon, B.R., McDowell, C.P., Hallgren, M., Meyer, J.D., Lyons, M., & Herring, M.P. (2018). Association of efficacy of resistance exercise training with depressive symptoms: Meta-analysis and meta-regression analysis of randomized clinical trials. JAMA Psychiatry, 75(6), 566576. doi: 10.1001/jamapsychiatry.2018.0572 CrossRefGoogle ScholarPubMed
Gothe, N.P., Khan, I., Hayes, J., Erlenbach, E., & Damoiseaux, J.S. (2019). Yoga effects on brain health: A systematic review of the current literature. Brain Plasticity, 5(1), 105122. doi: 10.3233/BPL-190084 Google Scholar
Greenstein, A.S., Paranthaman, R., Burns, A., Jackson, A., Malik, R.A., Baldwin, R.C., & Heagerty, A.M. (2010). Cerebrovascular damage in late-life depression is associated with structural and functional abnormalities of subcutaneous small arteries. Hypertension, 56(4), 734740.CrossRefGoogle ScholarPubMed
Greer, T.L., Grannemann, B.D., Chansard, M., Karim, A.I., & Trivedi, M.H. (2015). Dose-dependent changes in cognitive function with exercise augmentation for major depression: Results from the TREAD study. European Neuropsychopharmacology, 25(2), 248256. doi: 10.1016/j.euroneuro.2014.10.001 CrossRefGoogle ScholarPubMed
Gujral, S., Aizenstein, H., Reynolds, C.F., 3rd, Butters, M.A., & Erickson, K.I. (2017). Exercise effects on depression: Possible neural mechanisms. General Hospital Psychiatry, 49, 210. doi: 10.1016/j.genhosppsych.2017.04.012 CrossRefGoogle ScholarPubMed
Gujral, S., Aizenstein, H., Reynolds, C.F., 3rd, Butters, M.A., Grove, G., Karp, J.F., & Erickson, K.I. (2019). Exercise for depression: A feasibility trial exploring neural mechanisms. American Journal of Geriatric Psychiatry, 27(6), 611616. doi: 10.1016/j.jagp.2019.01.012 CrossRefGoogle ScholarPubMed
Heissel, A., Vesterling, A., White, S.A., Kallies, G., Behr, D., Arafat, A.M., … Budde, H. (2015). Feasibility of an exercise program for older depressive inpatients: A pilot study. GeroPsych: The Journal of Gerontopsychology and Geriatric Psychiatry, 28(4), 163171. doi: 10.1024/1662-9647/a000134 CrossRefGoogle Scholar
Herbert, J., & Lucassen, P.J. (2016). Depression as a risk factor for Alzheimer’s disease: Genes, steroids, cytokines and neurogenesis - What do we need to know? Frontiers in Neuroendocrinology, 41, 153171. doi: 10.1016/j.yfrne.2015.12.001 CrossRefGoogle ScholarPubMed
Hu, L., Smith, L., Imm, K.R., Jackson, S.E., & Yang, L. (2019). Physical activity modifies the association between depression and cognitive function in older adults. Journal of Affective Disorders, 246, 800805. doi: 10.1016/j.jad.2019.01.008 CrossRefGoogle ScholarPubMed
Jonasson, L.S., Nyberg, L., Kramer, A.F., Lundquist, A., Riklund, K., & Boraxbekk, C.-J. (2017). Aerobic exercise intervention, cognitive performance, and brain structure: Results from the physical influences on brain in aging (PHIBRA) study. Frontiers in Aging Neuroscience, 8. doi: 10.3389/fnagi.2016.00336 CrossRefGoogle ScholarPubMed
Jorm, A.F. (2001). History of depression as a risk factor for dementia: an updated review. Australian and New Zealand Journal of Psychiatry, 35(6), 776781. doi: 10.1046/j.1440-1614.2001.00967.x CrossRefGoogle ScholarPubMed
Joutsenniemi, K., Tuulio-Henriksson, A., Elovainio, M., Härkänen, T., Sainio, P., Koskinen, S., … Partonen, T. (2013). Depressive symptoms, major depressive episodes and cognitive test performance-what is the role of physical activity? Nordic Journal of Psychiatry, 67(4), 265273. doi: 10.3109/08039488.2012.736533 Google ScholarPubMed
Kaiser, R.H., Andrews-Hanna, J.R., Wager, T.D., & Pizzagalli, D.A. (2015). Large-scale network dysfunction in major depressive disorder: A meta-analysis of resting-state functional connectivity. JAMA Psychiatry, 72(6), 603611. doi: 10.1001/jamapsychiatry.2015.0071 CrossRefGoogle ScholarPubMed
Kandola, A., Ashdown-Franks, G., Hendrikse, J., Sabiston, C.M., & Stubbs, B. (2019). Physical activity and depression: Towards understanding the antidepressant mechanisms of physical activity. Neuroscience & Biobehavioral Reviews, 107, 525539. doi: 10.1016/j.neubiorev.2019.09.040 CrossRefGoogle ScholarPubMed
Karssemeijer, E.G.A., Aaronson, J.A., Bossers, W.J., Smits, T., Olde Rikkert, M.G.M., & Kessels, R.P.C. (2017). Positive effects of combined cognitive and physical exercise training on cognitive function in older adults with mild cognitive impairment or dementia: A meta-analysis. Ageing Research Reviews, 40, 7583. doi: 10.1016/j.arr.2017.09.003 CrossRefGoogle ScholarPubMed
Keller, J., Gomez, R., Williams, G., Lembke, A., Lazzeroni, L., Murphy, G.M., Jr., & Schatzberg, A.F. (2017). HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Molecular Psychiatry, 22(4), 527536. doi: 10.1038/mp.2016.120 CrossRefGoogle ScholarPubMed
Kempton, M.J., Salvador, Z., Munafò, M.R., Geddes, J.R., Simmons, A., Frangou, S., & Williams, S.C. (2011). Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Archives of General Psychiatry, 68(7), 675690. doi: 10.1001/archgenpsychiatry.2011.60 Google ScholarPubMed
Khatri, P., Blumenthal, J.A., Babyak, M.A., Craighead, W.E., Herman, S., Baldewicz, T., … Krishnan, K.R. (2001). Effects of exercise training on cognitive functioning among depressed older men and women. Journal of Aging and Physical Activity, 9(1), 4357.CrossRefGoogle Scholar
Kirton, J.W., Resnick, S.M., Davatzikos, C., Kraut, M.A., & Dotson, V.M. (2014). Depressive symptoms, symptom dimensions, and white matter lesion volume in older adults: a longitudinal study. American Journal of Geriatric Psychiatry, 22(12), 14691477. doi: 10.1016/j.jagp.2013.10.005 CrossRefGoogle ScholarPubMed
Kleemeyer, M.M., Kuhn, S., Prindle, J., Bodammer, N.C., Brechtel, L., Garthe, A., … Lindenberger, U. (2016). Changes in fitness are associated with changes in hippocampal microstructure and hippocampal volume among older adults. Neuroimage, 131, 155161. doi: 10.1016/j.neuroimage.2015.11.026 CrossRefGoogle ScholarPubMed
Knapen, J., Vancampfort, D., Morien, Y., & Marchal, Y. (2015). Exercise therapy improves both mental and physical health in patients with major depression. Disabil Rehabil, 37(16), 14901495. doi: 10.3109/09638288.2014.972579 CrossRefGoogle ScholarPubMed
Koenig, A.M., Bhalla, R.K., & Butters, M.A. (2014). Cognitive functioning and late-life depression. Journal of the International Neuropsychological Society, 20(5), 461467. doi: 10.1017/s1355617714000198 CrossRefGoogle ScholarPubMed
Koenig, A.M., DeLozier, I.J., Zmuda, M.D., Marron, M.M., Begley, A.E., Anderson, S.J., … Butters, M.A. (2015). Neuropsychological functioning in the acute and remitted States of late-life depression. Journal of Alzheimer’s Disease, 45(1), 175185. doi: 10.3233/JAD-148006 CrossRefGoogle ScholarPubMed
Kohler, S., Thomas, A.J., Barnett, N.A., & O’Brien, J.T. (2010). The pattern and course of cognitive impairment in late-life depression. Psychological Medicine, 40(4), 591602. doi: 10.1017/S0033291709990833 CrossRefGoogle ScholarPubMed
Komulainen, P., Pedersen, M., Hanninen, T., Bruunsgaard, H., Lakka, T.A., Kivipelto, M., … Rauramaa, R. (2008). BDNF is a novel marker of cognitive function in ageing women: the DR’s EXTRA Study. Neurobiology of Learning and Memory, 90(4), 596603. doi: 10.1016/j.nlm.2008.07.014 CrossRefGoogle ScholarPubMed
Krogh, J., Saltin, B., Gluud, C., & Nordentoft, M. (2009). The DEMO trial: a randomized, parallel-group, observer-blinded clinical trial of strength versus aerobic versus relaxation training for patients with mild to moderate depression. J Clin Psychiatry, 70(6), 790800. doi: 10.4088/jcp.08m04241 CrossRefGoogle ScholarPubMed
Krogh, J., Videbech, P., Thomsen, C., Gluud, C., & Nordentoft, M. (2012). DEMO-II trial. Aerobic exercise versus stretching exercise in patients with major depression-a randomised clinical trial. PLoS One, 7(10), e48316. doi: 10.1371/journal.pone.0048316 CrossRefGoogle ScholarPubMed
Kubesch, S., Bretschneider, V., Freudenmann, R., Weidenhammer, N., Lehmann, M., Spitzer, M., & Grön, G. (2003). Aerobic Endurance Exercise Improves Executive Functions in Depressed Patients. The Journal of Clinical Psychiatry, 64(9), 10051012. doi: 10.4088/JCP.v64n0905 CrossRefGoogle ScholarPubMed
Kvam, S., Kleppe, C.L., Nordhus, I.H., & Hovland, A. (2016). Exercise as a treatment for depression: A meta-analysis. Journal of Affective Disorders, 202, 6786. doi: 10.1016/j.jad.2016.03.063 CrossRefGoogle ScholarPubMed
Lee, J.S., Potter, G.G., Wagner, H.R., Welsh-Bohmer, K.A., & Steffens, D.C. (2007). Persistent mild cognitive impairment in geriatric depression. International Psychogeriatrics, 19(1), 125135. doi: 10.1017/S1041610206003607 CrossRefGoogle ScholarPubMed
Li, M.Y., Huang, M.M., Li, S.Z., Tao, J., Zheng, G.H., & Chen, L.D. (2017). The effects of aerobic exercise on the structure and function of DMN-related brain regions: a systematic review. International Journal of Neuroscience, 127(7), 634649. doi: 10.1080/00207454.2016.1212855 CrossRefGoogle ScholarPubMed
Li, W., Wang, Y., Ward, B.D., Antuono, P.G., Li, S.J., & Goveas, J.S. (2017). Intrinsic inter-network brain dysfunction correlates with symptom dimensions in late-life depression. Journal of Psychiatric Research, 87, 7180. doi: 10.1016/j.jpsychires.2016.12.011 CrossRefGoogle ScholarPubMed
Liao, Y., Huang, X., Wu, Q., Yang, C., Kuang, W., Du, M., … Gong, Q. (2013). Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. Journal of Psychiatry & Neuroscience, 38(1), 4956. doi: 10.1503/jpn.110180 CrossRefGoogle ScholarPubMed
Lin, J., Wang, D., Lan, L., & Fan, Y. (2017). Multiple Factors Involved in the Pathogenesis of White Matter Lesions. BioMed Research International, 2017, 9372050. doi: 10.1155/2017/9372050 CrossRefGoogle ScholarPubMed
Linnemann, C., & Lang, U.E. (2020). Pathways connecting late-life depression and dementia. Frontiers in Pharmacology, 11, 279. doi: 10.3389/fphar.2020.00279 CrossRefGoogle ScholarPubMed
Liu-Ambrose, T., Nagamatsu, L.S., Voss, M.W., Khan, K.M., & Handy, T.C. (2012). Resistance training and functional plasticity of the aging brain: a 12-month randomized controlled trial. Neurobiology of Aging, 33(8), 16901698. doi: 10.1016/j.neurobiolaging.2011.05.010 CrossRefGoogle ScholarPubMed
Lockwood, K.A., Alexopoulos, G.S., & van Gorp, W.G. (2002). Executive dysfunction in geriatric depression. American Journal of Psychiatry, 159(7), 11191126. doi: 10.1176/appi.ajp.159.7.1119 CrossRefGoogle ScholarPubMed
Loprinzi, P.D., Harper, J., & Ikuta, T. (2020). The effects of aerobic exercise on corpus callosum integrity: systematic review. Physician and Sportsmedicine, 17. doi: 10.1080/00913847.2020.1758545 Google ScholarPubMed
Lugtenburg, A., Zuidersma, M., Oude Voshaar, R.C., & Schoevers, R.A. (2016). Symptom dimensions of depression and 3-year incidence of dementia: Results from the Amsterdam Study of the Elderly. Journal of Geriatric Psychiatry and Neurology, 29(2), 99107. doi: 10.1177/0891988715606235 CrossRefGoogle ScholarPubMed
Maass, A., Duzel, S., Goerke, M., Becke, A., Sobieray, U., Neumann, K., … Duzel, E. (2015). Vascular hippocampal plasticity after aerobic exercise in older adults. Molecular Psychiatry, 20(5), 585593. doi: 10.1038/mp.2014.114 CrossRefGoogle ScholarPubMed
Maier, S.U., Makwana, A.B., & Hare, T.A. (2015). Acute stress impairs self-control in goal-directed choice by altering multiple functional connections within the brain’s decision circuits. Neuron, 87(3), 621631. doi: 10.1016/j.neuron.2015.07.005 CrossRefGoogle ScholarPubMed
Majd, M., Saunders, E.F.H., & Engeland, C.G. (2020). Inflammation and the dimensions of depression: A review. Frontiers in Neuroendocrinology, 56, 100800. doi: 10.1016/j.yfrne.2019.100800 CrossRefGoogle ScholarPubMed
Majer, M., Ising, M., Kunzel, H., Binder, E.B., Holsboer, F., Modell, S., & Zihl, J. (2004). Impaired divided attention predicts delayed response and risk to relapse in subjects with depressive disorders. Psychological Medicine, 34(8), 14531463. doi: 10.1017/s0033291704002697 CrossRefGoogle ScholarPubMed
McLaren, M.E., Szymkowicz, S.M., O’Shea, A., Woods, A.J., Anton, S.D., & Dotson, V.M. (2017). Vertex-wise examination of depressive symptom dimensions and brain volumes in older adults. Psychiatry Research: Neuroimaging, 260, 7075. doi: 10.1016/j.pscychresns.2016.12.008 CrossRefGoogle ScholarPubMed
Md Zemberi, N.F.N., Ismail, M.M., & Abdullah, M. (2020). Exercise Interventions as the Primary Treatment for Depression: Evidence from a Narrative Review. Malaysian Journal of Medical Sciences, 27(5), 523. doi: 10.21315/mjms2020.27.5.2 CrossRefGoogle ScholarPubMed
Menchetti, M., Cevenini, N., De Ronchi, D., Quartesan, R., & Berardi, D. (2006). Depression and frequent attendance in elderly primary care patients. General Hospital Psychiatry, 28(2), 119124. doi: 10.1016/j.genhosppsych.2005.10.007 CrossRefGoogle ScholarPubMed
Miller, A.H., & Raison, C.L. (2016). The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nature Reviews Immunology, 16(1), 2234. doi: 10.1038/nri.2015.5 CrossRefGoogle Scholar
Morimoto, S.S., & Alexopoulos, G.S. (2013). Cognitive deficits in geriatric depression: clinical correlates and implications for current and future treatment. Psychiatric Clinics of North America, 36(4), 517531. doi: 10.1016/j.psc.2013.08.002 CrossRefGoogle ScholarPubMed
Murphy, C.F., & Alexopoulos, G.S. (2004). Longitudinal association of initiation/perseveration and severity of geriatric depression. American Journal of Geriatric Psychiatry, 12(1), 5056.CrossRefGoogle ScholarPubMed
Murri, M.B., Ekkekakis, P., Menchetti, M., Neviani, F., Trevisani, F., Tedeschi, S., … Amore, M. (2018). Physical exercise for late-life depression: Effects on symptom dimensions and time course. Journal of Affective Disorders, 230, 6570. doi: 10.1016/j.jad.2018.01.004 CrossRefGoogle ScholarPubMed
Naismith, S.L., Norrie, L.M., Mowszowski, L., & Hickie, I.B. (2012). The neurobiology of depression in later-life: clinical, neuropsychological, neuroimaging and pathophysiological features. Progress in Neurobiology, 98(1), 99143.CrossRefGoogle ScholarPubMed
Nakano, Y., Baba, H., Maeshima, H., Kitajima, A., Sakai, Y., Baba, K., … Arai, H. (2008). Executive dysfunction in medicated, remitted state of major depression. Journal of Affective Disorders, 111(1), 4651. doi: 10.1016/j.jad.2008.01.027 CrossRefGoogle ScholarPubMed
Nebes, R.D., Pollock, B.G., Houck, P.R., Butters, M.A., Mulsant, B.H., Zmuda, M.D., & Reynolds, C.F., 3rd. (2003). Persistence of cognitive impairment in geriatric patients following antidepressant treatment: a randomized, double-blind clinical trial with nortriptyline and paroxetine. Journal of Psychiatric Research, 37(2), 99108. doi: 10.1016/s0022-3956(02)00085-7 CrossRefGoogle ScholarPubMed
Nestor, P.G., O’Donovan, K., Lapp, H.E., Hasler, V.C., Boodai, S.B., & Hunter, R. (2019). Risk and protective effects of serotonin and BDNF genes on stress-related adult psychiatric symptoms. Neurobiology of Stress, 11, 100186. doi: 10.1016/j.ynstr.2019.100186 CrossRefGoogle ScholarPubMed
Neviani, F., Belvederi Murri, M., Mussi, C., Triolo, F., Toni, G., Simoncini, E., … Neri, M. (2017). Physical exercise for late life depression: Effects on cognition and disability. International Psychogeriatrics, 29(7), 11051112. doi: 10.1017/S1041610217000576 CrossRefGoogle ScholarPubMed
Niemann, C., Godde, B., & Voelcker-Rehage, C. (2014). Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults. Frontiers in Aging Neuroscience, 6, 170. doi: 10.3389/fnagi.2014.00170 CrossRefGoogle ScholarPubMed
Northey, J.M., Cherbuin, N., Pumpa, K.L., Smee, D.J., & Rattray, B. (2018). Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. British Journal of Sports Medicine, 52(3), 154160. doi: 10.1136/bjsports-2016-096587 CrossRefGoogle ScholarPubMed
Oertel-Knöchel, V., Mehler, P., Thiel, C., Steinbrecher, K., Malchow, B., Tesky, V., … Hänsel, F. (2014). Effects of aerobic exercise on cognitive performance and individual psychopathology in depressive and schizophrenia patients. European Archives of Psychiatry and Clinical Neuroscience, 264(7), 589604. doi: 10.1007/s00406-014-0485-9 CrossRefGoogle ScholarPubMed
Olson, R.L., Brush, C.J., Ehmann, P.J., & Alderman, B.L. (2017). A randomized trial of aerobic exercise on cognitive control in major depression. Clinical Neurophysiology, 128(6), 903913. doi: 10.1016/j.clinph.2017.01.023 CrossRefGoogle ScholarPubMed
Ownby, R.L. (2010). Neuroinflammation and cognitive aging. Current Psychiatry Reports, 12(1), 3945. doi: 10.1007/s11920-009-0082-1 CrossRefGoogle ScholarPubMed
Ownby, R.L., Crocco, E., Acevedo, A., John, V., & Loewenstein, D. (2006). Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Archives of General Psychiatry, 63(5), 530538. doi: 10.1001/archpsyc.63.5.530 CrossRefGoogle ScholarPubMed
Pandya, M., Altinay, M., Malone, D.A., Jr., & Anand, A. (2012). Where in the brain is depression? Current Psychiatry Reports, 14(6), 634642. doi: 10.1007/s11920-012-0322-7 CrossRefGoogle ScholarPubMed
Pitts, B.L., Wen, V., Whealin, J.M., Fogle, B.M., Southwick, S.M., Esterlis, I., & Pietrzak, R.H. (2020). Depression and cognitive dysfunction in older US Military veterans: Moderating effects of BDNF Val66Met polymorphism and physical exercise. The American Journal of Geriatric Psychiatry, 28(9), 959967. doi: 10.1016/j.jagp.2020.02.001 CrossRefGoogle Scholar
Price, J.L., & Drevets, W.C. (2010). Neurocircuitry of mood disorders. Neuropsychopharmacology, 35(1), 192216. doi: 10.1038/npp.2009.104 CrossRefGoogle ScholarPubMed
Quigley, A., MacKay-Lyons, M., & Eskes, G. (2020). Effects of Exercise on Cognitive Performance in Older Adults: A Narrative Review of the Evidence, Possible Biological Mechanisms, and Recommendations for Exercise Prescription. Journal of Aging Research, 2020, 1407896. doi: 10.1155/2020/1407896 CrossRefGoogle ScholarPubMed
Rashidi-Ranjbar, N., Miranda, D., Butters, M.A., Mulsant, B.H., & Voineskos, A.N. (2020). Evidence for structural and functional alterations of frontal-executive and corticolimbic circuits in late-life depression and relationship to mild cognitive impairment and dementia: A systematic review. Frontiers in Neuroscience, 14(253). doi: 10.3389/fnins.2020.00253 CrossRefGoogle ScholarPubMed
Reppermund, S., Ising, M., Lucae, S., & Zihl, J. (2009). Cognitive impairment in unipolar depression is persistent and non-specific: further evidence for the final common pathway disorder hypothesis. Psychological Medicine, 39(4), 603614. doi: 10.1017/S003329170800411X CrossRefGoogle ScholarPubMed
Reppermund, S., Zhuang, L., Wen, W., Slavin, M.J., Trollor, J.N., Brodaty, H., & Sachdev, P.S. (2014). White matter integrity and late-life depression in community-dwelling individuals: diffusion tensor imaging study using tract-based spatial statistics. British Journal of Psychiatry, 205(4), 315320. doi: 10.1192/bjp.bp.113.142109 CrossRefGoogle ScholarPubMed
Respino, M., Jaywant, A., Kuceyeski, A., Victoria, L.W., Hoptman, M.J., Scult, M.A., … Gunning, F.M. (2019). The impact of white matter hyperintensities on the structural connectome in late-life depression: Relationship to executive functions. Neuroimage: Clinical, 23, 101852. doi: 10.1016/j.nicl.2019.101852 CrossRefGoogle ScholarPubMed
Rosenberg, D., Depp, C.A., Vahia, I.V., Reichstadt, J., Palmer, B.W., Kerr, J., … Jeste, D.V. (2010). Exergames for subsyndromal depression in older adults: A pilot study of a novel intervention. The American Journal of Geriatric Psychiatry, 18(3), 221226. doi: 10.1097/JGP.0b013e3181c534b5 CrossRefGoogle ScholarPubMed
Rutherford, B.R., Taylor, W.D., Brown, P.J., Sneed, J.R., & Roose, S.P. (2017). Biological aging and the future of geriatric psychiatry. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 72(3), 343352. doi: 10.1093/gerona/glw241 CrossRefGoogle ScholarPubMed
Saez de Asteasu, M.L., Martinez-Velilla, N., Zambom-Ferraresi, F., Casas-Herrero, A., & Izquierdo, M. (2017). Role of physical exercise on cognitive function in healthy older adults: A systematic review of randomized clinical trials. Ageing Research Reviews, 37, 117134. doi: 10.1016/j.arr.2017.05.007 CrossRefGoogle ScholarPubMed
Sakr, H.F., Abbas, A.M., & El Samanoudy, A.Z. (2015). Effect of vitamin E on cerebral cortical oxidative stress and brain-derived neurotrophic factor gene expression induced by hypoxia and exercise in rats. Journal of Physiology and Pharmacology, 66(2), 191202.Google ScholarPubMed
Sanchez-Carro, Y., Portella, M.J., Leal-Leturia, I., Salvat-Pujol, N., Etxandi, M., de Arriba-Arnau, A., … Lopez-Garcia, P. (2021). Age at illness onset and physical activity are associated with cognitive impairment in patients with current diagnosis of major depressive disorder. Journal of Affective Disorders, 279, 343352. doi: 10.1016/j.jad.2020.10.032 CrossRefGoogle ScholarPubMed
Schattin, A., Baier, C., Mai, D., Klamroth-Marganska, V., Herter-Aeberli, I., & de Bruin, E.D. (2019). Effects of exergame training combined with omega-3 fatty acids on the elderly brain: a randomized double-blind placebo-controlled trial. BMC Geriatr, 19(1), 81. doi: 10.1186/s12877-019-1084-4 CrossRefGoogle ScholarPubMed
Schmaal, L., Veltman, D.J., van Erp, T.G., Samann, P.G., Frodl, T., Jahanshad, N., … Hibar, D.P. (2016). Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Molecular Psychiatry, 21(6), 806812. doi: 10.1038/mp.2015.69 CrossRefGoogle ScholarPubMed
Schouten, R.W., Harmse, V.J., Dekker, F.W., van Ballegooijen, W., Siegert, C.E.H., & Honig, A. (2019). Dimensions of depressive symptoms and their association with mortality, hospitalization, and quality of life in dialysis patients: A cohort study. Psychosomatic Medicine, 81(7), 649658. doi: 10.1097/PSY.0000000000000723 CrossRefGoogle ScholarPubMed
Schuch, F.B., Vancampfort, D., Richards, J., Rosenbaum, S., Ward, P.B., & Stubbs, B. (2016). Exercise as a treatment for depression: A meta-analysis adjusting for publication bias. Journal of Psychiatric Research, 77, 4251. doi: 10.1016/j.jpsychires.2016.02.023 CrossRefGoogle ScholarPubMed
Semkovska, M., Quinlivan, L., O’Grady, T., Johnson, R., Collins, A., O’Connor, J., … Gload, T. (2019). Cognitive function following a major depressive episode: a systematic review and meta-analysis. Lancet Psychiatry, 6(10), 851861. doi: 10.1016/S2215-0366(19)30291-3 CrossRefGoogle Scholar
Sexton, C.E., Betts, J.F., Demnitz, N., Dawes, H., Ebmeier, K.P., & Johansen-Berg, H. (2016). A systematic review of MRI studies examining the relationship between physical fitness and activity and the white matter of the ageing brain. Neuroimage, 131, 8190. doi: 10.1016/j.neuroimage.2015.09.071 CrossRefGoogle ScholarPubMed
Sexton, C.E., Mackay, C.E., & Ebmeier, K.P. (2013). A systematic review and meta-analysis of magnetic resonance imaging studies in late-life depression. American Journal of Geriatric Psychiatry, 21(2), 184195. doi: 10.1016/j.jagp.2012.10.019 CrossRefGoogle ScholarPubMed
Shimada, H., Park, H., Makizako, H., Doi, T., Lee, S., & Suzuki, T. (2014). Depressive symptoms and cognitive performance in older adults. Journal of Psychiatric Research, 57, 149156. doi: 10.1016/j.jpsychires.2014.06.004 CrossRefGoogle ScholarPubMed
Siddarth, P., Funes, C.M., Laird, K.T., Ercoli, L., & Lavretsky, H. (2020). Predictors of cognitive improvement following treatment for late-life depression. Journal of Geriatric Psychiatry and Neurology, 891988720915515. doi: 10.1177/0891988720915515 Google ScholarPubMed
Smith, P.J., Blumenthal, J.A., Hoffman, B.M., Cooper, H., Strauman, T.A., Welsh-Bohmer, K., … Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72(3), 239252. doi: 10.1097/PSY.0b013e3181d14633 CrossRefGoogle ScholarPubMed
Sneed, J.R., Rindskopf, D., Steffens, D.C., Krishnan, K.R.R., & Roose, S.P. (2008). The vascular depression subtype: evidence of internal validity. Biological Psychiatry, 64(6), 491497. doi: 10.1016/j.biopsych.2008.03.032 CrossRefGoogle ScholarPubMed
Sneed, J.R., Roose, S.P., Keilp, J.G., Krishnan, K.R., Alexopoulos, G.S., & Sackeim, H.A. (2007). Response inhibition predicts poor antidepressant treatment response in very old depressed patients. American Journal of Geriatric Psychiatry, 15(7), 553563. doi: 10.1097/JGP.0b013e3180302513 CrossRefGoogle ScholarPubMed
Sofi, F., Valecchi, D., Bacci, D., Abbate, R., Gensini, G.F., Casini, A., & Macchi, C. (2011). Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. Journal of Internal Medicine, 269(1), 107117. doi: 10.1111/j.1365-2796.2010.02281.x CrossRefGoogle ScholarPubMed
Srisurapanont, M., Mok, Y.M., Yang, Y.K., Chan, H.N., Della, C.D., Zainal, N.Z., … Kalita, P. (2018). Cognitive complaints and predictors of perceived cognitive dysfunction in adults with major depressive disorder: Findings from the Cognitive Dysfunction in Asians with Depression (CogDAD) study. Journal of Affective Disorders, 232, 237242. doi: 10.1016/j.jad.2018.02.014 CrossRefGoogle ScholarPubMed
Steffens, D.C., Wang, L., Manning, K.J., & Pearlson, G.D. (2017). Negative affectivity, aging, and depression: results from the Neurobiology of Late-Life Depression (NBOLD) Study. The American Journal of Geriatric Psychiatry, 25(10), 11351149.CrossRefGoogle ScholarPubMed
Stimpson, N.J., Davison, G., & Javadi, A.H. (2018). Joggin’ the Noggin: Towards a Physiological Understanding of Exercise-Induced Cognitive Benefits. Neuroscience & Biobehavioral Reviews, 88, 177186. doi: 10.1016/j.neubiorev.2018.03.018 CrossRefGoogle ScholarPubMed
Strommer, J.M., Davis, S.W., Henson, R.N., Tyler, L.K., Cam, C.A.N., & Campbell, K.L. (2020). Physical activity predicts population-level age-related differences in frontal white matter. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 75(2), 236243. doi: 10.1093/gerona/gly220 Google ScholarPubMed
Sun, M., Lanctot, K., Herrmann, N., & Gallagher, D. (2018). Exercise for cognitive symptoms in depression: A systematic review of interventional studies. The Canadian Journal of Psychiatry, 63(2), 115128. doi: 10.1177/0706743717738493 CrossRefGoogle ScholarPubMed
Szuhany, K.L., Bugatti, M., & Otto, M.W. (2015). A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. Journal of Psychiatric Research, 60, 5664. doi: 10.1016/j.jpsychires.2014.10.003 CrossRefGoogle ScholarPubMed
Tadayonnejad, R., & Ajilore, O. (2014). Brain network dysfunction in late-life depression: a literature review. Journal of Geriatric Psychiatry and Neurology, 27(1), 512. doi: 10.1177/0891988713516539 CrossRefGoogle ScholarPubMed
Teixeira, A.L., Barbosa, I.G., Diniz, B.S., & Kummer, A. (2010). Circulating levels of brain-derived neurotrophic factor: correlation with mood, cognition and motor function. Biomarkers in Medicine, 4(6), 871887. doi: 10.2217/bmm.10.111 CrossRefGoogle ScholarPubMed
Vance, D.E., Marson, D.C., Triebel, K.L., Ball, K.K., Wadley, V.G., & Cody, S.L. (2016). Physical Activity and Cognitive Function in Older Adults: The Mediating Effect of Depressive Symptoms. Journal of Neuroscience Nursing, 48(4), E2e12. doi: 10.1097/jnn.0000000000000197 CrossRefGoogle ScholarPubMed
Vasques, P.E., Moraes, H., Silveira, H., Deslandes, A.C., & Laks, J. (2011). Acute exercise improves cognition in the depressed elderly: the effect of dual-tasks. Clinics (Sao Paulo), 66(9), 15531557. doi: 10.1590/s1807-59322011000900008 CrossRefGoogle ScholarPubMed
Vaughan, L., Corbin, A.L., & Goveas, J.S. (2015). Depression and frailty in later life: a systematic review. Clinical Interventions in Aging, 10, 19471958. doi: 10.2147/CIA.S69632 CrossRefGoogle ScholarPubMed
Volkert, J., Schulz, H., Harter, M., Wlodarczyk, O., & Andreas, S. (2013). The prevalence of mental disorders in older people in Western countries - a meta-analysis. Ageing Research Reviews, 12(1), 339353. doi: 10.1016/j.arr.2012.09.004 CrossRefGoogle ScholarPubMed
Voss, M.W., Prakash, R.S., Erickson, K.I., Basak, C., Chaddock, L., Kim, J.S., … Kramer, A.F. (2010). Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Frontiers in Aging Neuroscience, 2.Google Scholar
Voss, M.W., Vivar, C., Kramer, A.F., & van Praag, H. (2013). Bridging animal and human models of exercise-induced brain plasticity. Trends in Cognitive Sciences, 17(10), 525544. doi: 10.1016/j.tics.2013.08.001 CrossRefGoogle ScholarPubMed
Vyas, C.M., Donneyong, M., Mischoulon, D., Chang, G., Gibson, H., Cook, N.R., … Okereke, O.I. (2020). Association of race and ethnicity with late-life depression severity, symptom burden, and care. JAMA Network Open, 3(3), e201606. doi: 10.1001/jamanetworkopen.2020.1606 CrossRefGoogle ScholarPubMed
Wayne, P.M., Walsh, J.N., Taylor-Piliae, R.E., Wells, R.E., Papp, K.V., Donovan, N.J., & Yeh, G.Y. (2014). Effect of tai chi on cognitive performance in older adults: systematic review and meta-analysis. Journal of the American Geriatrics Society, 62(1), 2539. doi: 10.1111/jgs.12611 CrossRefGoogle ScholarPubMed
Weisenbach, S.L., & Kumar, A. (2014). Current understanding of the neurobiology and longitudinal course of geriatric depression. Current Psychiatry Reports, 16(9), 463.CrossRefGoogle ScholarPubMed
Woo, Y.S., Rosenblat, J.D., Kakar, R., Bahk, W.M., & McIntyre, R.S. (2016). Cognitive Deficits as a Mediator of Poor Occupational Function in Remitted Major Depressive Disorder Patients. Clinical Psychopharmacology and Neuroscience, 14(1), 116. doi: 10.9758/cpn.2016.14.1.1 CrossRefGoogle ScholarPubMed
World Health Organization (2019). Global action plan on physical activity 2018-2030: More active people for a healthier world. Geneva: World Health Organization.Google Scholar
Wu, A., Ying, Z., & Gomez-Pinilla, F. (2008). Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience, 155(3), 751759. doi: 10.1016/j.neuroscience.2008.05.061 CrossRefGoogle ScholarPubMed
Ye, Q., Su, F., Gong, L., Shu, H., Liao, W., Xie, C., … Bai, F. (2017). Divergent roles of vascular burden and neurodegeneration in the cognitive decline of geriatric depression patients and Mild Cognitive Impairment patients. Frontiers in Aging Neuroscience, 9, 288. doi: 10.3389/fnagi.2017.00288 CrossRefGoogle ScholarPubMed
Yuan, M., Fu, H., Liu, R., & Fang, Y. (2020). Effect of Frequency of Exercise on Cognitive Function in Older Adults: Serial Mediation of Depression and Quality of Sleep. International Journal of Environmental Research and Public Health, 17(3). doi: 10.3390/ijerph17030709 CrossRefGoogle ScholarPubMed
Zhang, S., Xiang, K., Li, S., & Pan, H.F. (2021). Physical activity and depression in older adults: the knowns and unknowns. Psychiatry Research, 297, 113738. doi: 10.1016/j.psychres.2021.113738 CrossRefGoogle ScholarPubMed
Zheng, G., Ye, B., Zheng, Y., Xiong, Z., Xia, R., Qiu, P., … Chen, L. (2019). The effects of exercise on the structure of cognitive related brain regions: A meta-analysis of functional neuroimaging data. International Journal of Neuroscience, 129(4), 406415. doi: 10.1080/00207454.2018.1508135 Google ScholarPubMed
Zlatar, Z.Z., Moore, R.C., Palmer, B.W., Thompson, W.K., & Jeste, D.V. (2014). Cognitive complaints correlate with depression rather than concurrent objective cognitive impairment in the successful aging evaluation baseline sample. Journal of Geriatric Psychiatry and Neurology, 27(3), 181187. doi: 10.1177/0891988714524628 CrossRefGoogle ScholarPubMed
Zlatar, Z.Z., Muniz, M., Galasko, D., & Salmon, D.P. (2018). Subjective cognitive decline correlates with depression symptoms and not with concurrent objective cognition in a clinic-based sample of older adults. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 73(7), 11981202. doi: 10.1093/geronb/gbw207 CrossRefGoogle ScholarPubMed