Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T12:33:44.583Z Has data issue: false hasContentIssue false

Early prediction of long-term cognitive impairment after cardiac arrest

Published online by Cambridge University Press:  01 May 2009

JÖRN PROHL*
Affiliation:
Department of Cognitive Rehabilitation, Neurological Rehabilitation Center Godeshöhe, Academic Teaching Hospital, University of Bonn, Bonn, Germany
SEBASTIAN BODENBURG
Affiliation:
Neuropsychological Office, Hamburg, Germany* Department of Psychology, University of Hamburg, Hamburg, Germany
STEPHAN JEFF RUSTENBACH
Affiliation:
Center for Internal Medicine and Dermatology, German Center of Competence in Health Services Research in Dermatology, University Clinics of Hamburg, Hamburg, Germany
*
Correspondence and reprint requests to: Jörn Prohl, Department of Cognitive Rehabilitation, Neurological Rehabilitation Center Godeshöhe, Academic Teaching Hospital, University of Bonn, Waldstraße 2-10, 53117 Bonn, Germany. E-mail: joern.prohl@t-online.de

Abstract

This prospective study evaluated the prognostic value of early neurobiochemical markers, neuron-specific enolase and astroglial protein S-100B, for long-term cognitive outcome after cardiac arrest. Six months after admission of a cohort of 80 consecutive patients, 26 survivors were able to undergo a neuropsychological test battery. Survivors showed low test performances in attention, learning/memory, and executive functioning. Neuropsychological bedside screening during the first month significantly differentiated between patients with and without long-term cognitive impairment. The neurobiochemical marker S-100B at day 3 after admission was found to predict significant proportions of variance in specific cognitive domains (learning/memory and executive functioning). The results indicate that early neuropsychological assessment might help identify patients who run at risk of long-term neuropsychological dysfunction. This study also suggests that especially the protein S-100B provides valuable information on long-term cognitive outcomes. To understand the exact relationship, results have to be replicated in larger trials. (JINS, 2009, 15, 344–353.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramson, N.S., Meisel, A., & Safar, P. (1986). Deferred consent. A new approach for resuscitation research on comatose patients. Journal of the American Medical Association, 255, 2466–2471.CrossRefGoogle ScholarPubMed
Aschenbrenner, S., Tucha, O., & Lange, K.W. (2001). Regensburger Word Fluency Test (RWT). Göttingen, Germany: Hogrefe-Verlag.Google Scholar
Benton, A.L., Abigail, B.S., Hamsher, K.S., Varney, N.R., & Spreen, O. (1983). Contributions to neuropsychological assessment—A clinical manual. New York: Oxford University Press.Google Scholar
Berek, K., Jeschow, M., & Aichner, F. (1997). The prognostication of cerebral hypoxia after out-of-hospital cardiac arrest in adults. European Neurology, 37, 135–145.CrossRefGoogle ScholarPubMed
Caine, D. & Watson, J.D.G. (2000). Neuropsychological and neuropathological sequelae of cerebral anoxia: A critical review. Journal of International Neuropsychology Society, 6, 86–99.CrossRefGoogle ScholarPubMed
Delis, D.C., Kramer, J.H., Kaplan, E., & Ober, B.A. (1987). California Verbal Learning Test. Research Edition. San Antonio, TX: The Psychological Corporation.Google Scholar
Drysdale, E.E., Grubb, N.R., Fox, K.A.A., & O’Caroll, R.E. (2000). Chronicity of memory impairment in long-term out-of-hospital cardiac arrest survivors. Resuscitation, 47, 27–32.CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-Mental State.” A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198.CrossRefGoogle ScholarPubMed
Grubb, N.R., Simpson, C., Sherwood, R.A., Abraha, H.D., Cobbe, S.M., O’Caroll, R.E., Deary, I., & Fox, K.A. (2007). Prediction of cognitive dysfunction after resuscitation from out-of-hospital cardiac arrest using serum neuron-specific enolase and protein s-100. Heart, 93, 1268–1273.CrossRefGoogle ScholarPubMed
Härting, C., Markowitsch, H.J., Neufeld, H., Calabrese, P., Deisinger, K., & Kessler, J. (2000). Wechsler Memory Scale-Revised. Göttingen, Germany: Hogrefe-Verlag.Google Scholar
Haupt, W.F., Prange, H.W., & Janzen, R.W.C. (1997). Postanoxic coma: Clinical data and prognosis, review of literature and state of the art. Aktuelle Neurologie, 24, 103–119.CrossRefGoogle Scholar
Herrmann, M., Curio, N., Jost, S., Grubich, C., Ebert, A.D., Fork, M.L., & Synowitz, H. (2001). Release of biochemical markers of damage to neuronal and glial brain tissue is associated with short- and long-term neuropsychological outcome after traumatic brain injury. Journal of Neurology, Neurosurgery, and Psychiatry, 70, 95–100.CrossRefGoogle Scholar
Herrmann, M., Johnsson, P., & Romner, B. (2003). Molecular markers of brain damage: Current state and future perspectives. Restorative Neurology and Neuroscience, 21, 75–77.Google ScholarPubMed
Horn, W. (1983). Leistungsprüfsystem (LPS) [Performance Test System]. Göttingen, Germany: Hogrefe-Verlag.Google Scholar
Kessler, J., Grond, M., & Schaaf, A. (1991). Cognitive Minimal-Screening (CMS). Weinheim, Germany: Beltz Test.Google Scholar
Kessler, J., Schaaf, A., & Mielke, R. (1993). Fragmentary Picture Test (FPT). Göttingen, Germany: Hogrefe-Verlag.Google Scholar
Kleindienst, A., McGinn, M.J., Harvey, H.B., Colello, R.J., Hamm, R.J., & Bullock, M.R. (2005). Enhanced hippocampal neurogenesis by intraventricular S-100B infusion is associated with improved cognitive recovery after traumatic brain injury. Journal of Neurotrauma, 22, 645–655.CrossRefGoogle Scholar
Laming, P.R. (1998). Changing concepts on the role of glia. In Laming, P.R.Sykova, E.Reichenbach, A.Hatton, G.I. & Bauer, H. (Eds.), Glial Cells: Their role in behaviour, pp. 1–21. Cambridge, UK: Cambridge University Press.Google Scholar
Müllges, W. & Stoll, P. (2002). Hypoxic-ischemic brain injury. Aktuelle Neurologie, 29, 431–446.CrossRefGoogle Scholar
Nelson, A., Fogel, B., & Faust, D. (1986). Bedside cognitive screening instruments––A critical assessment. Journal of Nervous and Mental Disease, 174, 73–83.CrossRefGoogle Scholar
Prohl, J., Röther, J., Kluge, S., de Heer, G., Liepert, J., Bodenburg, S., Pawlik, K., & Kreymann, G. (2007). Prediction of short-term and long-term outcome after cardiac arrest: A prospective multivariate approach combining biochemical, clinical, electrophysiological, and neuropsychological investigations. Critical Care Medicine, 35, 1230–1237.CrossRefGoogle ScholarPubMed
Reitan, R.M. (1979). Trail Making Test (TMT). Göttingen, Germany: Hogrefe-Verlag.Google Scholar
Roine, R.O., Kajaste, S., & Kaste, M. (1993). Neuropsychological sequelae of cardiac arrest. Journal of the American Medical Association, 269, 237–242.CrossRefGoogle ScholarPubMed
Rosén, H., Sunnerhagen, S., Herlitz, J., Blomstrand, C., & Rosengren, L. (2001). Serum levels of the brain-derived proteins S-100 and NSE predict long-term outcome after cardiac arrest. Resuscitation, 49, 183–191.CrossRefGoogle ScholarPubMed
Saklayen, M., Liss, H., & Markert, R. (1995). In-hospital cardiopulmonary resuscitation. Survival in hospital and literature review. Medicine, 74, 163–75.CrossRefGoogle ScholarPubMed
Sauvé, M.J., Doolittle, N., Walker, J.A., Paul, S.M., & Scheinmann, M.M. (1996). Factors associated with cognitive recovery after cardiopulmonary resuscitation. American Journal of Critical Care, 5, 127–139.CrossRefGoogle ScholarPubMed
Snodgrass, J.G. & Vanderwart, M. (1980). A standardized set of 260 pictures: Norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology: Human Learning and Memory, 6, 174–215.Google ScholarPubMed
Sturm, W., Willmes, K., & Horn, W. (1993). Leistungsprüfsystem for 50-90 Years (LPS 50+) [Performance Test System]. Göttingen, Germany: Hogrefe-Verlag.Google Scholar
Sunnerhagen, K.S., Johansson, O., Herlitz, J., & Grimby, G. (1996). Life after cardiac arrest; a retrospective study. Resuscitation,31,135–140.CrossRefGoogle ScholarPubMed
Teasdale, G. & Jennet, B. (1974). Assessment of coma and impaired consciousness. A practical scale. Lancet, 2, 81–83.CrossRefGoogle ScholarPubMed
Van Eldik, L.L. & Wainwright, W.H. (2003). The Janus face of glial-derived S-100B: Beneficial and detrimental functions in the brain. Restorative Neurology and Neuroscience, 21, 97–108.Google Scholar
Wechsler, D. (1981). Wechsler Adult Intelligence Scale-Revised. New York: Psychological Corporation.Google Scholar
Wunderlich, M.T., Ebert, A.D., Kratz, T., Goertler, M., Jost, S., & Herrmann, M. (1999). Early neurobehavioral outcome after stroke is related to release of neuro-biochemical markers of brain damage. Stroke, 30, 1190–1195.CrossRefGoogle Scholar
Zandbergen, E.G.J. (2008). Postanoxic coma: How (long) should we treat? European Journal of Anaesthesiology, 42(Suppl), 39–42.CrossRefGoogle ScholarPubMed
Zandbergen, E.G.J., De Haan, R.J., & Hijdra, A. (2001). Prediction of poor outcome in anoxic-ischemic coma with biochemical markers of brain damage. Journal of Clinical Neurophysiology, 17, 498–510.CrossRefGoogle Scholar
Zandbergen, E.G.J., De Haan, R.J., Stoutenbeek, C.P., Koelman, J.H.T.M., & Hijdra, A. (1998). Systematic review of early prediction of poor outcome in anoxic-ischemic coma. Lancet, 352, 1808–1812.CrossRefGoogle Scholar
Zimmer, D.B., Cornwall, E.H., & Landar, A. (1995). The S100 protein family: History, function, and expression. Brain Research Bulletin, 37, 417–429.CrossRefGoogle ScholarPubMed
Zimmermann, P. & Fimm, B. (1993). Test for Attentional Performance (TAP). Freiburg, Germany: Psytest.Google Scholar
Zingler, V.C., Krumm, B., Bertsch, T., Fassbender, K., & Pohlmann-Eden, B. (2003). Early prediction of neurological outcome after cardiopulmonary resuscitation: A multimodal approach combining neurobiochemical and electrophysical investigations may provide high prognostic certainty in patients after cardiac arrest. European Neurology, 49, 79–84.CrossRefGoogle Scholar