Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T00:14:34.933Z Has data issue: false hasContentIssue false

How Functional Connectivity between Emotion Regulation Structures Can Be Disrupted: Preliminary Evidence from Adolescents with Moderate to Severe Traumatic Brain Injury

Published online by Cambridge University Press:  28 August 2013

Mary R. Newsome*
Affiliation:
Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
Randall S. Scheibel
Affiliation:
Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
Andrew R. Mayer
Affiliation:
The Mind Research Network, Albuquerque, New Mexico Neurology Department, University of New Mexico School of Medicine, Albuquerque, New Mexico
Zili D. Chu
Affiliation:
Department of Radiology, Baylor College of Medicine, Houston, Texas Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas
Elisabeth A. Wilde
Affiliation:
Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas Department of Radiology, Baylor College of Medicine, Houston, Texas Department of Neurology, Baylor College of Medicine, Houston, Texas
Gerri Hanten
Affiliation:
Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
Joel L. Steinberg
Affiliation:
Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia
Xiaodi Lin
Affiliation:
Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
Xiaoqi Li
Affiliation:
Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
Tricia L. Merkley
Affiliation:
Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas Department of Psychology, Brigham Young University, Provo, Utah
Jill V. Hunter
Affiliation:
Department of Radiology, Baylor College of Medicine, Houston, Texas Department of Pediatric Radiology, Texas Children's Hospital, Houston, Texas
Ana C. Vasquez
Affiliation:
Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas
Lori Cook
Affiliation:
Center for Brain Health, University of Texas at Dallas, Dallas, Texas
Hanzhang Lu
Affiliation:
Advanced Imaging Research Center, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
Kami Vinton
Affiliation:
Center for Brain Health, University of Texas at Dallas, Dallas, Texas
Harvey S. Levin
Affiliation:
Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, Texas Department of Neurology, Baylor College of Medicine, Houston, Texas Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
*
Correspondence and reprint requests to: Mary R. Newsome, Cognitive Neuroscience Laboratory Baylor College of Medicine, 1709 Dryden Road, Ste 12.59, Houston, TX 77030. E-mail: mnewsome@bcm.edu

Abstract

Outcome of moderate to severe traumatic brain injury (TBI) includes impaired emotion regulation. Emotion regulation has been associated with amygdala and rostral anterior cingulate (rACC). However, functional connectivity between the two structures after injury has not been reported. A preliminary examination of functional connectivity of rACC and right amygdala was conducted in adolescents 2 to 3 years after moderate to severe TBI and in typically developing (TD) control adolescents, with the hypothesis that the TBI adolescents would demonstrate altered functional connectivity in the two regions. Functional connectivity was determined by correlating fluctuations in the blood oxygen level dependent (BOLD) signal of the rACC and right amygdala with that of other brain regions. In the TBI adolescents, the rACC was found to be significantly less functionally connected to medial prefrontal cortices and to right temporal regions near the amygdala (height threshold T = 2.5, cluster level p < .05, FDR corrected), while the right amygdala showed a trend in reduced functional connectivity with the rACC (height threshold T = 2.5, cluster level p = .06, FDR corrected). Data suggest disrupted functional connectivity in emotion regulation regions. Limitations include small sample sizes. Studies with larger sample sizes are necessary to characterize the persistent neural damage resulting from moderate to severe TBI during development. (JINS, 2013, 19, 1–14)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R., Damasio, H., Tranel, D., Cooper, G., Damasio, A. R. (2010). A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 20(7), 26832690.CrossRefGoogle Scholar
Alstott, J., Breakspear, M., Hagmann, P., Cammoun, L., Sporns, O. (2009). Modeling the impact of lesions in the human brain. [Research Support, Non-U.S. Gov't]. PLoS Computational Biology, 5(6), e1000408. doi:10.1371/journal.pcbi.1000408CrossRefGoogle ScholarPubMed
Ansari, A. H., Oghabian, M. A., Hossein-Zadeh, G. A. (2011). Assessment of functional and structural connectivity between motor cortex and thalamus using fMRI and DWI. Conference Proceedings IEEE Engineering in Medicine and Biology Society, 2011, 5056–5059. doi:10.1109/IEMBS.2011.6091252CrossRefGoogle Scholar
Asemota, A.O., George, B.P., Bowman, S.M., Haider, A.H., Schneider, E.B. (2013). Causes and trends in traumatic brain injury for United States adolescents. Journal of Neurotrauma, 30(2), 6775. doi:10.1089/neu.2012.2605CrossRefGoogle ScholarPubMed
Bigler, E.D., Abildskov, T.J., Wilde, E.A., McCauley, S.R., Li, X., Merkley, T.L., Levin, H.S. (2010). Diffuse damage in pediatric traumatic brain injury: A comparison of automated versus operator-controlled quantification methods. Neuroimage, 50(3), 10171026. doi:S1053-8119(10)00008-X [pii] 10.1016/j.neuroimage.2010.01.003 [doi]CrossRefGoogle ScholarPubMed
Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537541.CrossRefGoogle ScholarPubMed
Bonnelle, V., Ham, T.E., Leech, R., Kinnunen, K.M., Mehta, M.A., Greenwood, R.J., Sharp, D.J. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 109(12), 46904695. doi:1113455109 [pii] 10.1073/pnas.1113455109 [doi]CrossRefGoogle ScholarPubMed
Corbetta, M. (2012). Functional connectivity and neurological recovery. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Developmental Psychobiology, 54(3), 239253. doi:10.1002/dev.20507CrossRefGoogle ScholarPubMed
Cox, R.W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162173.CrossRefGoogle ScholarPubMed
Crowe, L.M., Catroppa, C., Babl, F.E., Rosenfeld, J.V., Anderson, V. (2012). Timing of traumatic brain injury in childhood and intellectual outcome. [Research Support, Non-U.S. Gov't]. Journal of Pediatric Psychology, 37(7), 745754. doi:10.1093/jpepsy/jss070CrossRefGoogle ScholarPubMed
de Sousa, A., McDonald, S., Rushby, J. (2012). Changes in emotional empathy, affective responsivity, and behavior following severe traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 34, 606623. doi:10.1080/13803395.2012.667067 [doi]CrossRefGoogle ScholarPubMed
Decety, J., Michalska, K.J., Akitsuki, Y. (2008). Who caused the pain? An fMRI investigation of empathy and intentionality in children. Neuropsychologia, 46(11), 26072614. doi:S0028-3932(08)00216-9 [pii] 10.1016/j.neuropsychologia.2008.05.026 [doi]CrossRefGoogle ScholarPubMed
Decety, J., Michalska, K.J., Kinzler, K.D. (2012). The contribution of emotion and cognition to moral sensitivity: A neurodevelopmental study. Cerebral Cortex, 22(1), 209220. doi:bhr111 [pii] 10.1093/cercor/bhr111 [doi]CrossRefGoogle ScholarPubMed
Dyck, M., Loughead, J., Kellermann, T., Boers, F., Gur, R.C., Mathiak, K. (2011). Cognitive versus automatic mechanisms of mood induction differentially activate left and right amygdala. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Neuroimage, 54(3), 25032513. doi:10.1016/j.neuroimage.2010.10.013CrossRefGoogle ScholarPubMed
Egner, T., Etkin, A., Gale, S., Hirsch, J. (2008). Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. [Comparative Study]. Cerebral Cortex, 18(6), 14751484. doi:10.1093/cercor/bhm179CrossRefGoogle ScholarPubMed
Etkin, A., Egner, T., Peraza, D.M., Kandel, E.R., Hirsch, J. (2006). Resolving emotional conflict: A role for the rostral anterior cingulate cortex in modulating activity in the amygdala. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Neuron, 51(6), 871882. doi:10.1016/j.neuron.2006.07.029CrossRefGoogle ScholarPubMed
Etkin, A., Prater, K.E., Hoeft, F., Menon, V., Schatzberg, A.F. (2010). Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. American Journal of Psychiatry, 167(5), 545554. doi:10.1176/appi.ajp.2009.09070931CrossRefGoogle ScholarPubMed
Etkin, A., Prater, K.E., Schatzberg, A.F., Menon, V., Greicius, M.D. (2009). Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Archives of General Psychiatry, 66(12), 13611372. doi:66/12/1361 [pii] 10.1001/archgenpsychiatry.2009.104 [doi]CrossRefGoogle ScholarPubMed
Fair, D.A., Cohen, A.L., Power, J.D., Dosenbach, N.U., Church, J.A., Miezin, F.M., Petersen, S.E. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Computational Biology, 5(5), e1000381. doi:10.1371/journal.pcbi.1000381 [doi]CrossRefGoogle Scholar
Faul, M., Xu, L., Wald, M.M., Coronado, V.G. (2010). Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control. Atlanta, GA.CrossRefGoogle Scholar
Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., Dale, A.M. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. [Comparative Study Research Support, U.S. Gov't, P.H.S.]. Neuron, 33(3), 341355.CrossRefGoogle ScholarPubMed
Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D.H., Dale, A.M. (2004). Automatically parcellating the human cerebral cortex. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Cerebral Cortex, 14(1), 1122.CrossRefGoogle ScholarPubMed
Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. [Comparative Study Research Support, N.I.H., Extramural Research Support, U.S. Gov't, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 96739678. doi:10.1073/pnas.0504136102CrossRefGoogle ScholarPubMed
Fox, M.D., Snyder, A.Z., Vincent, J.L., Raichle, M.E. (2007). Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron, 56(1), 171184. doi:S0896-6273(07)00666-6 [pii] 10.1016/j.neuron.2007.08.023 [doi]CrossRefGoogle ScholarPubMed
Fox, M.D., Zhang, D., Snyder, A.Z., Raichle, M.E. (2009). The global signal and observed anticorrelated resting state brain networks. [Research Support, N.I.H., Extramural]. Journal of Neurophysiology, 101(6), 32703283. doi:10.1152/jn.90777.2008CrossRefGoogle ScholarPubMed
Franco, A.R., Pritchard, A., Calhoun, V.D., Mayer, A.R. (2009). Interrater and intermethod reliability of default mode network selection. [Research Support, N.I.H., Extramural]. Human Brain Mapping, 30(7), 22932303. doi:10.1002/hbm.20668CrossRefGoogle ScholarPubMed
Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.B., Frith, C.D., Frackowiak, R.S.J. (1995). Statistical parametric maps in functional imaging – A general linear approach. Human Brain Mapping, 2, 189210.CrossRefGoogle Scholar
Ganesalingam, K., Sanson, A., Anderson, V., Yeates, K.O. (2006). Self-regulation and social and behavioral functioning following childhood traumatic brain injury. Journal of the International Neuropsychological Society, 12(5), 609621. doi:S1355617706060796 [pii] 10.1017/S1355617706060796 [doi]CrossRefGoogle ScholarPubMed
Glascher, J., Adolphs, R. (2003). Processing of the arousal of subliminal and supraliminal emotional stimuli by the human amygdala. [Clinical Trial Controlled Clinical Trial Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Neuroscience, 23(32), 1027410282.CrossRefGoogle ScholarPubMed
Graham, D.I., Ford, I., Adams, J.H., Doyle, D., Teasdale, G.M., Lawrence, A.E., McLellan, D.R. (1989). Ischaemic brain damage is still common in fatal non-missile head injury. [Research Support, Non-U.S. Gov't]. Journal of Neurology, Neurosurgery, and Psychiatry, 52(3), 346350.CrossRefGoogle ScholarPubMed
Hare, T.A., Tottenham, N., Galvan, A., Voss, H.U., Glover, G.H., Casey, B.J. (2008). Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task. Biological Psychiatry, 63(10), 927934. doi:S0006-3223(08)00359-4 [pii] 10.1016/j.biopsych.2008.03.015 [doi]CrossRefGoogle ScholarPubMed
Hatfield, E., Cacioppo, J.L., Rapson, R.L. (1993). Emotional contaion. Current Directions in Psychological Science, 2, 9699.CrossRefGoogle Scholar
Hinvest, N.S., Elliott, R., McKie, S., Anderson, I.M. (2011). Neural correlates of choice behavior related to impulsivity and venturesomeness. Neuropsychologia, 49(9), 23112320. doi:S0028-3932(11)00085-6 [pii] 10.1016/j.neuropsychologia.2011.02.023 [doi]CrossRefGoogle ScholarPubMed
Johnson, C.P., Juranek, J., Kramer, L.A., Prasad, M.R., Swank, P.R., Ewing-Cobbs, L. (2011). Predicting behavioral deficits in pediatric traumatic brain injury through uncinate fasciculus integrity. [Research Support, N.I.H., Extramural]. Journal of the International Neuropsychological Society, 17(4), 663673. doi:10.1017/S1355617711000464CrossRefGoogle ScholarPubMed
Jolliffe, D., Farrington, D.P. (2006). Development and validation of the Basic Empathy Scale. Journal of Adolescence, 29(4), 589611. doi:S0140-1971(05)00109-0 [pii] 10.1016/j.adolescence.2005.08.010 [doi]CrossRefGoogle ScholarPubMed
Kashluba, S., Hanks, R.A., Casey, J.E., Millis, S.R. (2008). Neuropsychologic and functional outcome after complicated mild traumatic brain injury. [Comparative Study Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.]. Archives of Physical Medicine and Rehabilitation, 89(5), 904911. doi:10.1016/j.apmr.2007.12.029CrossRefGoogle ScholarPubMed
Lancaster, J.L., Woldorff, M.G., Parsons, L.M., Liotti, M., Freitas, C.S., Rainey, L., Fox, P.T. (2000). Automated Talairach atlas labels for functional brain mapping. [Research Support, U.S. Gov't, P.H.S.]. Human Brain Mapping, 10(3), 120131.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Lenroot, R.K., Gogtay, N., Greenstein, D.K., Wells, E.M., Wallace, G.L., Clasen, L.S., Giedd, J.N. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage, 36(4), 10651073. doi:S1053-8119(07)00234-0 [pii] 10.1016/j.neuroimage.2007.03.053 [doi]CrossRefGoogle ScholarPubMed
Levin, H.S., Mendelsohn, D., Lilly, M.A., Yeakley, J., Song, J., Scheibel, R.S., Bruce, D. (1997). Magnetic resonance imaging in relation to functional outcome of pediatric closed head injury: A test of the Ommaya-Gennarelli model. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Neurosurgery, 40(3), 432440; discussion 440–441.Google ScholarPubMed
Mayer, A.R., Mannell, M.V., Ling, J., Gasparovic, C., Yeo, R.A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32(11), 18251835. doi:10.1002/hbm.21151 [doi] 10.1002/hbm.21151 [doi]CrossRefGoogle ScholarPubMed
McAllister, T.W. (1992). Neuropsychiatric sequelae of head injuries. The Psychiatric Clinics of North America, 15(2), 395413.CrossRefGoogle ScholarPubMed
Merkley, T.L., Bigler, E.D., Wilde, E.A., McCauley, S.R., Hunter, J.V., Levin, H.S. (2008). Diffuse changes in cortical thickness in pediatric moderate-to-severe traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Neurotrauma, 25(11), 13431345. doi:10.1089/neu.2008.0615CrossRefGoogle ScholarPubMed
Mervaala, E., Fohr, J., Kononen, M., Valkonen-Korhonen, M., Vainio, P., Partanen, K., Lehtonen, J. (2000). Quantitative MRI of the hippocampus and amygdala in severe depression. Psychological Medicine, 30(1), 117125.CrossRefGoogle ScholarPubMed
Murphy, K., Birn, R.M., Handwerker, D.A., Jones, T.B., Bandettini, P.A. (2009). The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? [Research Support, N.I.H., Intramural]. Neuroimage, 44(3), 893905. doi:10.1016/j.neuroimage.2008.09.036CrossRefGoogle ScholarPubMed
Nakamura, T., Hillary, F.G., Biswal, B.B. (2009). Resting network plasticity following brain injury. PLoS One, 4(12), e8220. doi:10.1371/journal.pone.0008220 [doi]CrossRefGoogle ScholarPubMed
Newsome, M.R., Scheibel, R.S., Hanten, G., Chu, Z., Steinberg, J.L., Hunter, J.V., Levin, H.S. (2010). Brain activation while thinking about the self from another person's perspective after traumatic brain injury in adolescents. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Neuropsychology, 24(2), 139147. doi:10.1037/a0017432CrossRefGoogle ScholarPubMed
Nummenmaa, L., Hirvonen, J., Parkkola, R., Hietanen, J.K. (2008). Is emotional contagion special? An fMRI study on neural systems for affective and cognitive empathy. Neuroimage, 43(3), 571580. doi:S1053-8119(08)00929-4 [pii] 10.1016/j.neuroimage.2008.08.014 [doi]CrossRefGoogle Scholar
Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97113.CrossRefGoogle ScholarPubMed
Patton, J.H., Stanford, M.S., Barratt, E.S. (1995). Factor structure of the Barratt impulsiveness scale. Journal of Clinincal Psychology, 51(6), 768774.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676682. doi:10.1073/pnas.98.2.676 [doi] 98/2/676 [pii]CrossRefGoogle ScholarPubMed
Ruby, P., Decety, J. (2004). How would you feel versus how do you think she would feel? A neuroimaging study of perspective-taking with social emotions. [Comparative Study]. Journal of Cognitive Neuroscience, 16(6), 988999. doi:10.1162/0898929041502661CrossRefGoogle Scholar
Scheibel, R.S., Newsome, M.R., Wilde, E.A., McClelland, M.M., Hanten, G., Krawczyk, D.C., Levin, H.S. (2011). Brain activation during a social attribution task in adolescents with moderate to severe traumatic brain injury. [Research Support, N.I.H., Extramural]. Social Neuroscience, 6(5–6), 582598. doi:10.1080/17470919.2011.588844CrossRefGoogle ScholarPubMed
Schmidt, A.T., Hanten, G.R., Li, X., Orsten, K.D., Levin, H.S. (2010). Emotion recognition following pediatric traumatic brain injury: Longitudinal analysis of emotional prosody and facial emotion recognition. Neuropsychologia, 48(10), 28692877. doi:S0028-3932(10)00222-8 [pii] 10.1016/j.neuropsychologia.2010.05.029 [doi]CrossRefGoogle ScholarPubMed
Schreiber, L.R., Grant, J.E., Odlaug, B.L. (2012). Emotion regulation and impulsivity in young adults. Journal of Psychiatric Research, 46(5), 651658. doi:S0022-3956(12)00056-8 [pii] 10.1016/j.jpsychires.2012.02.005 [doi]CrossRefGoogle ScholarPubMed
Schultz, R.T., Grelotti, D.J., Klin, A., Kleinman, J., Van der Gaag, C., Marois, R., Skudlarski, P. (2003). The role of the fusiform face area in social cognition: Implications for the pathobiology of autism. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358(1430), 415427. doi:10.1098/rstb.2002.1208CrossRefGoogle ScholarPubMed
Schummers, J., Yu, H., Sur, M. (2008). Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Science, 320(5883), 16381643. doi:10.1126/science.1156120CrossRefGoogle ScholarPubMed
Sharp, D.J., Beckmann, C.F., Greenwood, R., Kinnunen, K.M., Bonnelle, V., De Boissezon, X., Leech, R. (2011). Default mode network functional and structural connectivity after traumatic brain injury. Brain, 134(Pt 8), 22332247. doi:awr175 [pii] 10.1093/brain/awr175 [doi]CrossRefGoogle ScholarPubMed
Shmuel, A., Leopold, D.A. (2008). Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest. Human Brain Mapping, 29(7), 751761. doi:10.1002/hbm.20580 [doi]CrossRefGoogle ScholarPubMed
Slawik, H., Salmond, C.H., Taylor-Tavares, J.V., Williams, G.B., Sahakian, B.J., Tasker, R.C. (2009). Frontal cerebral vulnerability and executive deficits from raised intracranial pressure in child traumatic brain injury. [Research Support, Non-U.S. Gov't]. Journal of Neurotrauma, 26(11), 18911903. doi:10.1089/neu.2009.0942CrossRefGoogle ScholarPubMed
Somerville, L.H., Jones, R.M., Casey, B.J. (2010). A time of change: Behavioral and neural correlates of adolescent sensitivity to appetitive and aversive environmental cues. Brain and Cognition, 72(1), 124133. doi:S0278-2626(09)00112-2 [pii] 10.1016/j.bandc.2009.07.003 [doi]CrossRefGoogle ScholarPubMed
Szabo, C.A., Xiong, J., Lancaster, J.L., Rainey, L., Fox, P. (2001). Amygdalar and hippocampal volumetry in control participants: Differences regarding handedness. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. AJNR American Journal of Neuroradiology, 22(7), 13421345.Google ScholarPubMed
Talairach, J., Tournoux, P. (1988). Co-Planar Stereotaxic Atlas of the Human Brain (1st ed.). New York: Thieme Medical Publishers, Inc.Google Scholar
Teasdale, G., Jennett, B. (1974). Assessment of coma and impaired consciousness. A practical scale. Lancet, 2(7872), 8184.CrossRefGoogle ScholarPubMed
Tonks, J., Williams, W.H., Frampton, I., Yates, P., Wall, S.E., Slater, A. (2008). Reading emotions after childhood brain injury: Case series evidence of dissociation between cognitive abilities and emotional expression processing skills. Brain Injury, 22(4), 325332. doi:791714484 [pii] 10.1080/02699050801968303 [doi]CrossRefGoogle ScholarPubMed
van Marle, H.J., Hermans, E.J., Qin, S., Fernandez, G. (2010). Enhanced resting-state connectivity of amygdala in the immediate aftermath of acute psychological stress. Neuroimage, 53(1), 348354. doi:S1053-8119(10)00822-0 [pii] 10.1016/j.neuroimage.2010.05.070 [doi]CrossRefGoogle ScholarPubMed
Weisskoff, R.M. (1996). Simple measurement of scanner stability for functional NMR imaging of activation in the brain. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Magnetic Resonance in Medicine, 36(4), 643645.CrossRefGoogle ScholarPubMed
Wilde, E.A., Bigler, E.D., Hunter, J.V., Fearing, M.A., Scheibel, R.S., Newsome, M.R., Levin, H.S. (2007). Hippocampus, amygdala, and basal ganglia morphometrics in children after moderate-to-severe traumatic brain injury. Developmental Medicine and Child Neurology, 49(4), 294299. doi:DMCN294 [pii] 10.1111/j.1469-8749.2007.00294.x [doi]CrossRefGoogle ScholarPubMed
Wilde, E.A., Merkley, T.L., Bigler, E.D., Max, J.E., Schmidt, A.T., Ayoub, K.W., Levin, H.S. (2012). Longitudinal changes in cortical thickness in children after traumatic brain injury and their relation to behavioral regulation and emotional control. International Journal of Developmental Neuroscience, 30(3), 267276. doi:10.1016/j.ijdevneu.2012.01.003 [doi] S0736-5748(12)00004-4 [pii] 10.1016/j.ijdevneu.2012.01.003 [doi]CrossRefGoogle ScholarPubMed
Wilde, E.A., Newsome, M.R., Bigler, E.D., Pertab, J., Merkley, T.L., Hanten, G., Levin, H.S. (2011). Brain imaging correlates of verbal working memory in children following traumatic brain injury. [Research Support, N.I.H., Extramural]. International Journal of Psychophysiology, 82(1), 8696. doi:10.1016/j.ijpsycho.2011.04.006CrossRefGoogle ScholarPubMed
Williams, D.H., Levin, H.S., Eisenberg, H.M. (1990). Mild head injury classification. [Research Support, U.S. Gov't, P.H.S. Review]. Neurosurgery, 27(3), 422428.CrossRefGoogle ScholarPubMed
Wood, R.L., Williams, C. (2008). Inability to empathize following traumatic brain injury. Journal of the International Neuropsychological Society, 14(2), 289296. doi:S1355617708080326 [pii] 10.1017/S1355617708080326 [doi]CrossRefGoogle ScholarPubMed
Xia, J., Chen, J., Zhou, Y., Zhang, J., Yang, B., Xia, L., Wang, C. (2004). Volumetric MRI analysis of the amygdala and hippocampus in subjects with major depression. Journal of Huazhong University of Science and Technology, Medical Sciences, 24(5), 500502, 506.Google ScholarPubMed