Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-14T20:38:45.255Z Has data issue: false hasContentIssue false

Latent Classes of Cognitive Functioning Among Depressed Older Adults Without Dementia

Published online by Cambridge University Press:  24 June 2019

Ruth T. Morin*
Affiliation:
San Francisco VA Medical Center, Mental Health Service, San Francisco, USA
Philip Insel
Affiliation:
San Francisco VA Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, USA Lund University, Faculty of Medicine, Clinical Memory Research Unit, Lund, Sweden
Craig Nelson
Affiliation:
University of California San Francisco, Department of Psychiatry, San Francisco, USA
Meryl Butters
Affiliation:
University of Pittsburgh, Department of Psychiatry, Pittsburgh, Pennsylvania
David Bickford
Affiliation:
University of California San Francisco, Department of Psychiatry, San Francisco, USA
Susan Landau
Affiliation:
University of California Berkeley, Helen Wills Neuroscience Institute, Berkeley, USA
Andrew Saykin
Affiliation:
Indiana University School of Medicine, Department of Radiology and Imaging Sciences, Indianapolis, USA
Michael Weiner
Affiliation:
University of California San Francisco, Department of Psychiatry, San Francisco, USA
R. Scott Mackin
Affiliation:
San Francisco VA Medical Center, Mental Health Service, San Francisco, USA San Francisco VA Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, USA University of California San Francisco, Department of Psychiatry, San Francisco, USA
the ADNI Depression Project
Affiliation:
San Francisco VA Medical Center, Mental Health Service, San Francisco, USA San Francisco VA Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, USA Lund University, Faculty of Medicine, Clinical Memory Research Unit, Lund, Sweden University of California San Francisco, Department of Psychiatry, San Francisco, USA University of Pittsburgh, Department of Psychiatry, Pittsburgh, Pennsylvania University of California Berkeley, Helen Wills Neuroscience Institute, Berkeley, USA Indiana University School of Medicine, Department of Radiology and Imaging Sciences, Indianapolis, USA
*
*Correspondence and reprint requests to: Ruth T. Morin, San Francisco VA Medical Center, 4150 Clement Street, Mental Health Service, San Francisco, CA 94121. E-mail: ruth.morin@va.gov; (415) 221-4810 x23114.

Abstract

Objective:

Use latent class analysis (LCA) to identify patterns of cognitive functioning in a sample of older adults with clinical depression and without dementia and assess demographic, psychiatric, and neurobiological predictors of class membership.

Method:

Neuropsychological assessment data from 121 participants in the Alzheimer’s Disease Neuroimaging Initiative-Depression project (ADNI-D) were analyzed, including measures of executive functioning, verbal and visual memory, visuospatial and language functioning, and processing speed. These data were analyzed using LCA, with predictors of class membership such as depression severity, depression and treatment history, amyloid burden, and APOE e4 allele also assessed.

Results:

A two-class model of cognitive functioning best fit the data, with the Lower Cognitive Class (46.1% of the sample) performing approximately one standard deviation below the Higher Cognitive Class (53.9%) on most tests. When predictors of class membership were assessed, carrying an APOE e4 allele was significantly associated with membership in the Lower Cognitive Class. Demographic characteristics, age of depression onset, depression severity, history of psychopharmacological treatment for depression, and amyloid positivity did not predict class membership.

Conclusion:

LCA allows for identification of subgroups of cognitive functioning in a mostly cognitively intact late life depression (LLD) population. One subgroup, the Lower Cognitive Class, more likely to carry an APOE e4 allele, may be at a greater risk for subsequent cognitive decline, even though current performance on neuropsychological testing is within normal limits. These findings have implications for early identification of those at greatest risk, risk factors, and avenues for preventive intervention.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2019. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aisen, P.S., Petersen, R.C., Donohue, M.C., Gamst, A., Raman, R., Thomas, R.G., … Weiner, M.W. (2010). Clinical core of the Alzheimer’s disease neuroimaging initiative: Progress and plans. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 6(3), 239246. doi: 10.1016/j.jalz.2010.03.006 CrossRefGoogle Scholar
Ballard, C., Bannister, C., Solis, M., Oyebode, F., & Wilcock, G. (1996). The prevalence, associations and symptoms of depression amongst dementia sufferers. Journal of Affective Disorders, 36(3), 135144.CrossRefGoogle ScholarPubMed
Ballmaier, M., Narr, K.L., Toga, A.W., Elderkin-Thompson, V., Thompson, P.M., Hamilton, L., … Kumar, A. (2008). Hippocampal morphology and distinguishing late-onset from early-onset elderly depression. American Journal of Psychiatry, 165(2), 229237.CrossRefGoogle ScholarPubMed
Benedict, R.H. (1997). Brief visuospatial memory test–revised: professional manual. PAR.Google Scholar
Benton, A.L. (1983). Judgment of line orientation. Oxford: Oxford University Press.Google Scholar
Blazer, D.G. (2003). Depression in Late Life: Review and Commentary. The Journals of Gerontology: Series A, 58(3), M249M265. doi: 10.1093/gerona/58.3.M249 CrossRefGoogle ScholarPubMed
Brandt, J. (1991). The Hopkins Verbal Learning Test: Development of a new memory test with six equivalent forms. The Clinical Neuropsychologist, 5(2), 125142.CrossRefGoogle Scholar
Brodrick, J.E., & Mathys, M.L. (2016). Antidepressant Exposure and Risk of Dementia in Older Adults with Major Depressive Disorder. Journal of the American Geriatrics Society, 64(12), 25172521.CrossRefGoogle ScholarPubMed
Bruce, M.L. (2001). Depression and Disability in Late Life: Directions for Future Research. The American Journal of geriatric psychiatry, 9(2), 102112. doi: 10.1097/00019442-200105000-00003 CrossRefGoogle ScholarPubMed
Butters, M.A., Whyte, E.M., Nebes, R.D., Begley, A.E., Dew, M.A., Mulsant, B.H., … Pollock, B.G. (2004). The nature and determinants of neuropsychological functioning in late-lifedepression. Archives of General Psychiatry, 61(6), 587595.CrossRefGoogle Scholar
Byers, A.L., & Yaffe, K. (2011). Depression and risk of developing dementia. Nature Reviews Neurology, 7(6), 323331.CrossRefGoogle ScholarPubMed
Carrière, I., Norton, J., Farré, A., Wyart, M., Tzourio, C., Noize, P.,… Ancelin, M.L. (2017). Antidepressant use and cognitive decline in community-dwelling elderly people–The Three-City Cohort. BMC medicine, 15(1), 81.CrossRefGoogle ScholarPubMed
Caselli, R.J., Beach, T.G., Knopman, D.S., & Graff-Radford, N.R. (2017). Alzheimer Disease: Scientific Breakthroughs and Translational Challenges. Mayo Clinic Proceedings, 92(6), 978994. doi: 10.1016/j.mayocp.2017.02.011 CrossRefGoogle ScholarPubMed
Cohen, J. (1990). Things I have learned (so far). American psychologist, 45(12), 1304.CrossRefGoogle Scholar
Colarusso, R.P., & Hammill, D.D. (1972). Motor-free visual perception test: Academic Therapy Pub. Google Scholar
Corsentino, E.A., Sawyer, K., Sachs-Ericsson, N., & Blazer, D.G. (2009). Depressive symptoms moderate the influence of the apolipoproteinE ϵ4 allele on cognitive decline in a sample of community dwelling older adults. The American Journal of geriatric psychiatry, 17(2), 155165.CrossRefGoogle Scholar
Direk, N., Schrijvers, E.M., de Bruijn, R.F., Mirza, S., Hofman, A., Ikram, M.A., & Tiemeier, H. (2013). Plasma amyloid β, depression, and dementia in community-dwelling elderly. Journal of psychiatric research, 47(4), 479485.CrossRefGoogle ScholarPubMed
Doraiswamy, P.M., Krishnan, K.R.R., Oxman, T., Jenkyn, L.R., Coffey, D.J., Burt, T., & Clary, C.M. (2003). Does antidepressant therapy improve cognition in elderly depressed patients?. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 58(12), M1137M1144.CrossRefGoogle ScholarPubMed
Dotson, V.M., Beydoun, M.A., & Zonderman, A.B. (2010). Recurrent depressive symptoms and the incidence of dementia and mild cognitive impairment. Neurology, 75(1), 2734.CrossRefGoogle ScholarPubMed
Frances, A. (1994). Diagnostic and statistical manual of mental disorders: DSM-IV: American Psychiatric Association.Google Scholar
Gabryelewicz, T., Styczynska, M., Luczywek, E., Barczak, A., Pfeffer, A., Androsiuk, W., … Barcikowska, M. (2007). The rate of conversion of mild cognitive impairment to dementia: predictive role of depression. International journal of geriatric psychiatry, 22(6), 563567. doi: 10.1002/gps.1716 CrossRefGoogle Scholar
Geda, Y.E., Knopman, D.S., Mrazek, D.A., Jicha, G.A., Smith, G.., Negash, S., … Pankratz, V.S. (2006). Depression, apolipoprotein E genotype, and the incidence of mild cognitive impairment: a prospective cohort study. Archives of neurology, 63(3), 435440.CrossRefGoogle ScholarPubMed
Geerlings, M., den Heijer, T., Koudstaal, P.J., Hofman, A., & Breteler, M. (2008). History of depression, depressive symptoms, and medial temporal lobe atrophy and the risk of Alzheimer disease. Neurology, 70(15), 12581264.CrossRefGoogle ScholarPubMed
Genin, E., Hannequin, D., Wallon, D., Sleegers, K., Hiltunen, M., Combarros, O., … Berr, C. (2011). APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Molecular psychiatry, 16(9), 903907.CrossRefGoogle Scholar
Golden, C., & Freshwater, S. (2002). Stroop Color and Word Test, Revised 2002 Adult Manual for Clinical and Experimental Uses. Wood Dale, IL: Stoelting.Google Scholar
Hamilton, M. (1960). A rating scale for depression. Journal of neurology, neurosurgery, and psychiatry, 23(1), 56.CrossRefGoogle Scholar
Harrington, K.D., Gould, E., Lim, Y.Y., Ames, D., Pietrzak, R.H., Rembach, A., … Villemagne, V.L. (2017). Amyloid burden and incident depressive symptoms in cognitively normal older adults. International journal of geriatric psychiatry, 32(4), 455463.CrossRefGoogle ScholarPubMed
Harrington, K.D., Lim, Y.Y., Gould, E., & Maruff, P. (2015). Amyloid-beta and depression in healthy older adults: a systematic review. Australian & New Zealand Journal of Psychiatry, 49(1), 3646.CrossRefGoogle ScholarPubMed
Jansen, W.J., Ossenkoppele, R., Knol, D.L., Tijms, B.M., Scheltens, P., Verhey, F.R., … Alcolea, D. (2015). Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA, 313(19), 19241938.CrossRefGoogle ScholarPubMed
Janssen, J., Pol, H.E.H., de Leeuw, F.-E., Schnack, H.G., Lampe, I.K., Kok, R.M., … Heeren, T.J. (2007). Hippocampal volume and subcortical white matter lesions in late life depression: comparison of early and late onset depression. Journal of Neurology, Neurosurgery & Psychiatry, 78(6), 638640.CrossRefGoogle ScholarPubMed
Jones, H.E., Joshi, A., Shenkin, S., & Mead, G.E. (2016). The effect of treatment with selective serotonin reuptake inhibitors in comparison to placebo in the progression of dementia: a systematic review and meta-analysis. Age and ageing, 45(4), 448456.CrossRefGoogle ScholarPubMed
Jung, T., & Wickrama, K. (2008). An introduction to latent class growth analysis and growth mixture modeling. Social and personality psychology compass, 2(1), 302317.CrossRefGoogle Scholar
Kaplan, E., Goodglass, H., & Weintraub, S. (1983). The Boston naming test. 2nd. Philadelphia: Lea & Febiger.Google Scholar
Kessler, R.C., Birnbaum, H., Bromet, E., Hwang, I., Sampson, N., & Shahly, V. (2010). Age Differences in Major depression: Results from the National Comorbidity Surveys Replication (NCS-R). Psychological medicine, 40(2), 225. doi: 10.1017/S0033291709990213 CrossRefGoogle Scholar
Koenig, A.M., Bhalla, R.K., & Butters, M.A. (2014). Cognitive Functioning and Late-Life Depression. Journal of the International Neuropsychological Society, 20(5), 461467. doi: 10.1017/S1355617714000198 CrossRefGoogle ScholarPubMed
Koyama, A., Okereke, O.I., Yang, T., Blacker, D., Selkoe, D.J., & Grodstein, F. (2012). Plasma amyloid-β as a predictor of dementia and cognitive decline: a systematic review and meta-analysis. Archives of neurology, 69(7), 824831.CrossRefGoogle ScholarPubMed
Landau, S.M., Mintun, M.A., Joshi, A.D., Koeppe, R.A., Petersen, R.C., Aisen, P.S., … Jagust, W.J. (2012). Amyloid Deposition, Hypometabolism, and Longitudinal Cognitive Decline. Annals of neurology, 72(4), 578586. doi: 10.1002/ana.23650 CrossRefGoogle ScholarPubMed
Lee, C., Lin, C.-L., Sung, F.-C., Liang, J.-A., & Kao, C.-H. (2016). Antidepressant treatment and risk of dementia: a population-based, retrospective case-control study. The Journal of clinical psychiatry, 77(1), 117122; quiz 122.CrossRefGoogle ScholarPubMed
Lockwood, K.A., Alexopoulos, G.S., Kakuma, T., & Van Gorp, W.G. (2000). Subtypes of Cognitive Impairment in Depressed Older Adults. The American Journal of geriatric psychiatry, 8(3), 201208. doi: 10.1097/00019442-200008000-00004 CrossRefGoogle ScholarPubMed
Mackin, R.S., Nelson, J.C., Delucchi, K.L., Raue, P.J., Satre, D.D., Kiosses, D.N., … Arean, P.A. (2014). Association of age at depression onset with cognitive functioning in individuals with late-life depression and executive dysfunction. The American Journal of geriatric psychiatry, 22(12), 16331641.CrossRefGoogle ScholarPubMed
Meng, X., & D’Arcy, C. (2012). Education and dementia in the context of the cognitive reserve hypothesis: a systematic review with meta-analyses and qualitative analyses. PLOS ONE, 7(6), e38268.CrossRefGoogle ScholarPubMed
Murray, C.J., Lopez, A.D., & Organization, W.H. (1996). The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries, and risk factors in 1990 and projected to 2020: summary.Google Scholar
Muthén, L.K., & Muthén, B.O. (2007). Mplus. Statistical analysis with latent variables. Version, 3.Google Scholar
Nie, N., Hull, C., & Bent, D. (2011). IBM statistical package for the social sciences (SPSS Version 20). Computer Software. Chicago, IL: SPSS.Google Scholar
Nylund, K.L., Asparouhov, T., & Muthén, B.O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural equation modeling, 14(4), 535569.CrossRefGoogle Scholar
Regier, D.A., Boyd, J.H., Burke, J.D., Rae, D.S., Myers, J.K., Kramer, M., … Locke, B.Z. (1988). One-month prevalence of mental disorders in the United States: Based on five epidemiologic catchment area sites. Archives of General Psychiatry, 45(11), 977986.CrossRefGoogle ScholarPubMed
Reitan, R., & Wolfson, D. (1993). The Halstead-Reitan Neuropsychological Battery. Theory and clinical interpretation Neuropsychology Press, Tuscan, AZ.Google Scholar
Rey, A. (1964). L’examen clinique en psychologie [The clinical psychological examination]. Paris: Presses Universitaires de France.Google Scholar
Riddle, M., Potter, G.G., McQuoid, D.R., Steffens, D.C., Beyer, J.L., & Taylor, W.D. (2017). Longitudinal cognitive outcomes of clinical phenotypes of late-life depression. The American Journal of geriatric psychiatry, 25(10), 11231134.CrossRefGoogle ScholarPubMed
Rusmaully, J., Dugravot, A., Moatti, J.-P., Marmot, M.G., Elbaz, A., Kivimaki, M., … Singh-Manoux, A. (2017). Contribution of cognitive performance and cognitive decline to associations between socioeconomic factors and dementia: A cohort study. PLoS medicine, 14(6), e1002334.CrossRefGoogle ScholarPubMed
Savitz, J., Solms, M., & Ramesar, R. (2006). Apolipoprotein E variants and cognition in healthy individuals: A critical opinion. Brain Research Reviews, 51(1), 125135. doi: 10.1016/j.brainresrev.2005.10.006 CrossRefGoogle ScholarPubMed
Sheline, Y.I., Gado, M.H., & Kraemer, H.C. (2003). Untreated depression and hippocampal volume loss. American Journal of Psychiatry, 160(8), 15161518.CrossRefGoogle ScholarPubMed
Sneed, J.R., Rindskopf, D., Steffens, D.C., Krishnan, K.R.R., & Roose, S.P. (2008). The vascular depression subtype: evidence of internal validity. Biological psychiatry, 64(6), 491497.CrossRefGoogle ScholarPubMed
Steffens, . (2017). Late-life depression and the prodromes of dementia. JAMA Psychiatry, 74(7), 673674.CrossRefGoogle Scholar
Steffens, , McQuoid, D.R., Payne, M.E., & Potter, G.G.(2011). Change in hippocampal volume on magnetic resonance imaging and cognitive decline among older depressed and nondepressed subjects in the neurocognitive outcomes of depression in the elderly study. The American Journal of geriatric psychiatry, 19(1), 412.CrossRefGoogle ScholarPubMed
Sun, X., Steffens, D.C., Au, R., Folstein, M., Summergrad, P., Yee, J., … Qiu, W.Q. (2008). Amyloid-associated depression: a prodromal depression of Alzheimer disease?. Archives of General Psychiatry, 65(5), 542550.CrossRefGoogle ScholarPubMed
Uher, R., Perlis, R.H., Placentino, A., Dernovšek, M.Z., Henigsberg, N., Mors, O., … Farmer, A. (2012). Self‐report and clinician‐rated measures of depression severity: can one replace the other?. Depression and Anxiety, 29(12), 10431049.CrossRefGoogle ScholarPubMed
Wechsler, D. (1987). Wechsler memory scale-revised (WMS-R): Psychological Corporation.Google Scholar
Wechsler, D. (1997). Adult intelligence scale. New York, 21.Google Scholar
Wu, K.-Y., Hsiao, T., Chen, C.-S., Chen, C.-H., Hsieh, C.-J., Wai, Y.-Y., … Liu, C.-Y. (2014). Increased brain amyloid deposition in patients with a lifetime history of major depression: evidenced on 18F-florbetapir (AV-45/Amyvid) positron emission tomography. European journal of nuclear medicine and molecular imaging, 41(4), 714722.CrossRefGoogle ScholarPubMed
Yen, Y.-C., Rebok, G.W., Gallo, J.J., Yang, M.-J., Lung, F.-W., & Shih, C.-H. (2007). ApoE4 allele is associated with late-life depression: a population-based study. The American Journal of geriatric psychiatry, 15(10), 858868.CrossRefGoogle ScholarPubMed