Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T08:47:14.345Z Has data issue: false hasContentIssue false

White matter diffusivity predicts memory in patients with subjective and mild cognitive impairment and normal CSF total tau levels

Published online by Cambridge University Press:  19 October 2009

RAMUNE GRAMBAITE*
Affiliation:
Department of Neurology, Akershus University Hospital, Lørenskog, Norway Department of Psychology, University of Oslo, Oslo, Norway
VIDAR STENSET
Affiliation:
Department of Neurology, Akershus University Hospital, Lørenskog, Norway Department of Neurology, Faculty Division Akershus University Hospital, University of Oslo, Oslo, Norway Department of Neurosurgery, Oslo University Hospital Ullevål, Oslo, Norway
IVAR REINVANG
Affiliation:
Department of Psychology, University of Oslo, Oslo, Norway
KRISTINE B. WALHOVD
Affiliation:
Department of Psychology, University of Oslo, Oslo, Norway
ANDERS M. FJELL
Affiliation:
Department of Psychology, University of Oslo, Oslo, Norway
TORMOD FLADBY
Affiliation:
Department of Neurology, Akershus University Hospital, Lørenskog, Norway Department of Neurology, Faculty Division Akershus University Hospital, University of Oslo, Oslo, Norway
*
*Correspondence and reprint requests to: Ramune Grambaite, Department of Neurology, Akershus University Hospital, Sykehusveien 25, 1478 Lørenskog, Norway. E-mail: ramuneg@psykologi.uio.no

Abstract

Subjective and mild cognitive impairment (SCI and MCI) are etiologically heterogeneous conditions. This poses problems for assessment of pathophysiological mechanisms and risk of conversion to dementia. Neuropsychological, imaging, and cerebrospinal fluid (CSF) findings serve to distinguish Alzheimer’s disease (AD) and other etiological subgroups. Tau-molecules stabilize axonal microtubuli; high CSF total tau (T-tau) reflects ongoing axonal damage consistent with AD. Here, we stratify patients by CSF T-tau pathology to determine if memory network diffusion tensor imaging (DTI) predicts memory performance in the absence of elevated T-tau. We analyzed neuropsychological test results, hippocampus volume (HcV) and white matter diffusivity in 45 patients (35 with normal T-tau). The T-tau pathology group showed more hippocampus atrophy and memory impairment than the normal T-tau group. In the T-tau normal group: (1) memory was related with white matter diffusivity [fractional anisotropy (FA) and radial diffusivity (DR)], and (2) FA of the genu corpus callosum was a unique predictor of variance for verbal learning, and HcV did not contribute to this prediction. The smaller sample size in the T-tau pathology group precludes firm conclusions. In the normal T-tau group, white matter tract and memory changes may be associated with normal aging, or with non-tau related pathological mechanisms. (JINS, 2010, 16, 58–69.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adalbert, R., Gilley, J., & Coleman, M.P. (2007). Ab, tau and ApoE4 in Alzheimer’s disease: The axonal connection. Trends in Molecular Medicine, 13, 135142.CrossRefGoogle Scholar
Aggleton, J.P., & Brown, M.W. (1999). Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behavioral and Brain Sciences, 22, 425444.CrossRefGoogle ScholarPubMed
Apostolova, L.G., Dutton, R.A., Dinov, I.D., Hayashi, K.M., Toga, A.W., Cummings, J.L., & Thompson, P.M. (2006). Conversion of mild cognitive impairment to Alzheimer disease predicted by hippocampal atrophy maps. Archives of Neurology, 63, 693699.CrossRefGoogle ScholarPubMed
Auer, S., & Reisberg, B. (1997). The GDS/FAST staging system. International Psychogeriatrics, 9, 167171.CrossRefGoogle ScholarPubMed
Bihan, D.L, Mangin, J.-F., & Poupon, C. (2001). Diffusion tensor imaging: Concepts and applications. Journal of Magnetic Resonance Imaging, 13, 534546.CrossRefGoogle ScholarPubMed
Blennow, K. (2004). CSF biomarkers for mild cognitive impairment. Journal of Internal Medicine, 256, 224234.CrossRefGoogle ScholarPubMed
Bondi, M.W., Jak, A.J., Delano-Wood, L., Jacobson, M.W., Delis, D.C., & Salmon, D.P. (2008). Neuropsychological contributions to the early identification of Alzheimer’s disease. Neuropsychology Review, 18, 7390.CrossRefGoogle Scholar
Braak, H., & Braak, E. (1991). Neuropathological staging of Alzheimer-related changes. Acta Neuropathologica, 82, 239259.CrossRefGoogle ScholarPubMed
Braak, E., Griffing, K., Arai, K., Bohl, J., Bratzke, H., & Braak, H. (1999). Neuropathology of Alzheimer’s disease: What is new since A. Alzheimer? European Archives of Psychiatry and Clinical Neuroscience, 249, 1422.CrossRefGoogle ScholarPubMed
Buckner, R.L. (2004). Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate. Neuron, 44, 195208.CrossRefGoogle Scholar
Buckner, R.L., Head, D., Parker, J., Fotenos, A.F., Marcus, D., Morris, J.C., & Snyder, A.Z. (2004). A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume. Neuroimage, 23, 724738.CrossRefGoogle ScholarPubMed
Cabeza, R., Anderson, N.D., Locantore, J.K., & McIntosh, A.R. (2002). Aging gracefully: Compensatory brain activity in high-performing older adults. Neuroimage, 17, 13941402.CrossRefGoogle ScholarPubMed
Charlton, R.A., Barrick, T.R., McIntyre, D.J., Shen, Y., O’Sullivan, M., Howe, F.A., et al. (2006). White matter damage on diffusion tensor imaging correlates with age-related cognitive decline. Neurology, 66, 217222.CrossRefGoogle ScholarPubMed
Cohen, C.K. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
Concha, L., Gross, D.W., & Wheatley, B.M. (2006). Diffusion tensor imaging of time-dependent axonal and myelin degradation after corpus callosotomy in epilepsy patients. Neuroimage, 32, 10901099.CrossRefGoogle ScholarPubMed
Delis, D.C., Kaplan, E., & Kramer, J.H. (2001). Delis and Kaplan D-KEFS Executive Functions System: Examiner’s manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Dubois, B., Feldman, H.H., Jacova, C., Dekosky, S.T., Barberger-Gateau, P., Cummings, J., et al. (2007). Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurology, 6, 667669.CrossRefGoogle ScholarPubMed
Edman, A, Mahnfeldt, M, & Wallin, A. (2001). Inter-rater reliability of the STEP protocol. Journal of Geriatric Psychiatry and Neurology, 14, 140144.CrossRefGoogle ScholarPubMed
Fellgiebel, A., Wille, P., Müller, M.J., Winterer, G., Scheurich, A., Vucurevic, G., et al. (2004). Ultrastructural hippocampal and white matter alterations in mild cognitive impairment: A diffusion tensor imaging study. Dementia and Geriatric Cognitive Disorders, 18, 101108.CrossRefGoogle ScholarPubMed
Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341355.CrossRefGoogle ScholarPubMed
Fjell, A.M., Walhovd, K.B., Amlien, I., Bjørnerud, A., Reinvang, I., Gjerstad, L., et al. (2008a). Morphometric changes in the episodic memory network and tau pathologic features correlate with memory performance in patients with MCI. American Journal of Neuroradiology, 29, 11831189.CrossRefGoogle Scholar
Fjell, A.M., Westlye, L.T., Greve, D.N., Fischl, B., Benner, T., van der Kouwe, A.J., et al. (2008b). The relationship between diffusion tensor imaging and volumetry as measures of white matter properties. Neuroimage, 42, 16541668.CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini Mental State”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatry Research, 12, 189198.CrossRefGoogle ScholarPubMed
Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R.C., Ritchie, K., Broich, K., et al. (2006). Mild cognitive impairment. Lancet, 367, 12621270.CrossRefGoogle ScholarPubMed
Greicius, M.D., Krasnow, B., Boyett-Anderson, J.M., Eliez, S., Schatzberg, A.F., Reiss, A.L., & Menon, V. (2003). Regional analysis of hippocampal activation during memory encoding and retrieval: fMRI study. Hippocampus, 13, 164174.CrossRefGoogle ScholarPubMed
Han, X., & Fischl, B. (2007). Atlas renormalization for improved brain MR image segmentation across scanner platforms. IEEE Transactions on Medical Imaging, 26, 479486.CrossRefGoogle ScholarPubMed
Hansson, O., Zetteberg, H., Buchhave, P., Londos, E., Blennow, K., & Minthon, L. (2006). Assosiation between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: A follow up study. Lancet Neurology, 5, 228234.CrossRefGoogle Scholar
Head, D., Buckner, R.L., Shimony, J.S., Williams, L.E., Akbudak, E., Conturo, T.E., et al. (2004). Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: Evidence from diffusion tensor imaging. Cerebral Cortex, 14, 410423.CrossRefGoogle ScholarPubMed
Head, D., Snyder, A.Z., Girton, L.E., Morris, J.C., & Buckner, R.L. (2005). Frontal-hippocampal double dissociation between normal aging and Alzheimer’s disease. Cerebral Cortex, 15, 732739.CrossRefGoogle ScholarPubMed
Huang, H., Zhang, J., Jiang, H., Wakana, S., Poetscher, L., Miller, M.I., et al. (2005). DTI tractography based parcellation of white matter: Application to the mid-sagittal morphology of corpus callosum. Neuroimage, 26, 195205.CrossRefGoogle Scholar
Iqbal, K., Liu, F., Gong, C.X., Alonso, A.C., & Grundke-Iqbal, I. (2009). Mechanisms of tau-induced neurodegeneration. Acta Neuropathologica, 118, 5369.CrossRefGoogle ScholarPubMed
Jack, C.R., Petersen, R.C., Xu, Y., O’Brien, P.C., & Smith, G.E. (2000). Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology, 55, 484489.CrossRefGoogle ScholarPubMed
Jack, C.R. Jr, Petersen, R.C., Xu, Y.C., O’Brien, P.C., Smith, G.E., Ivnik, R.J., Boeve, B.F., et al. (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology, 52, 13971403.CrossRefGoogle ScholarPubMed
Kiernan, R.J., Mueller, J., Langston, J.W., & Van Dyke, C. (1987). The Neurobehavioral Cognitive Status Examination: A brief but quantitative approach to cognitive assessment. Annals of Internal Medicine, 107, 481485.CrossRefGoogle ScholarPubMed
Kraus, M.F., Susmaras, T., Caughlin, B.P., Walker, C.J., Sweeney, J.A., & Little, D.M. (2007). White matter integrity and cognition in chronic traumatic brain injury: A diffusion tensor imaging study. Brain, 130, 25082519.CrossRefGoogle ScholarPubMed
Leon, M.J., Desanti, S., & Zinkowski, R. (2004). MRI and CSF studies in the early diagnosis of Alzheimer’ disease. Journal of Internal Medicine, 256, 205223.CrossRefGoogle Scholar
Makris, N., Meyer, J., Bates, J., Yeterian, E.H., Kennedy, D.N., & Caviness, V.S. (1999). MRI-based parcellation of human cerebral white matter and nuclei. Part II: Rationale and applications with systematics of cerebral connectivity, Neuroimage, 9, 1845.CrossRefGoogle Scholar
Meyers, J.E., & Meyers, K.R. (1995). Rey Complex Figure Test and recognition trial. Florida: Psychological Assessment Resources.Google Scholar
Morris, J.C. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43, 24122414.CrossRefGoogle ScholarPubMed
Müller, M.J., Greverus, D., Dellani, P.R., Weibrich, C., Wille, P.R., Scheurich, A., et al. (2005). Functional implications of hippocampal volume and diffusivity in mild cognitive impairment. Neuroimage, 28, 10331042.CrossRefGoogle ScholarPubMed
Nordlund, A., Rolstad, S., Klang, O., Lind, K., Pedersen, M., Blennow, K., et al. (2008). Episodic memory and speed/attention deficits are associated with Alzheimer-typical CSF abnormalities in MCI. Journal of the International Neuropsychological Society, 14, 582590.CrossRefGoogle ScholarPubMed
Papez, J.W. (1995/1937). A proposed mechanism of emotion. The Journal of Neuropsychiatry and Clinical Neurosciences, 7, 103112.Google ScholarPubMed
Petersen, R.C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183194.CrossRefGoogle ScholarPubMed
Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56, 303308.CrossRefGoogle ScholarPubMed
Petersen, R.C., Stevens, J.C., Ganguli, M., Tangalos, E.G., Cummings, J.L., & DeKosky, S.T. (2001). Practice parameter. Early detection of dementia: Mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 56, 11331142.CrossRefGoogle Scholar
Phillips, N.A., Chertkow, H., Leblanc, M.M., Pim, H., & Murtha, S. (2004). Functional and anatomical memory indices in patients with or at risk for Alzheimer’s disease. Journal of the International Neuropsychological Society, 10, 200210.CrossRefGoogle ScholarPubMed
Reisberg, B., Ferris, S.H., de Leon, M.J., & Crook, T. (1988). Global Deterioration Scale (GDS). Psychopharmacology Bulletin, 24, 661663.Google ScholarPubMed
Reisberg, B., & Gauthier, S. (2008). Current evidence for subjective cognitive impairment (SCI) as the pre-mild cognitive impairment (MCI) stage of subsequently manifest Alzheimer’s disease. International Psychogeriatrics, 20, 116.CrossRefGoogle ScholarPubMed
Reisberg, B., Prichep, L., Mosconi, L., John, E.R., Glodzik-Sobanska, L., Boksay, I., et al. (2008). The pre-mild cognitive impairment, subjective cognitive impairment stage of Alzheimer’s disease. Alzheimer’s and Dementia, 4, 98108.CrossRefGoogle ScholarPubMed
Royall, D.R., Mahurin, R.K., & Gray, K.F. (1992). Bedside assessment of executive cognitive impairment: The executive interview. Journal of the American Geriatrics Society, 40, 12211226.CrossRefGoogle ScholarPubMed
Schmidt, M. (1996). Rey Auditory and Verbal Learning Test. A handbook. Los Angeles: Western Psychological Services.Google Scholar
Shim, Y.S, Yoon, B., Shon, Y.M., Ahn, K.J., & Yang, D.W. (2008). Difference of the hippocampal and white matter microalterations in MCI patients according to the severity of subcortical vascular changes: Neuropsychological correlates of diffusion tensor imaging. Clinical Neurology and Neurosurgery, 110, 552561.CrossRefGoogle Scholar
Sjögren, M., Vanderstichele, H., Agren, H., Zachrisson, O., Edsbagge, M., Wikkelsø, C., et al. (2001). Tau and Aβ42 in cerebrospinal fluid from healthy adults 21–93 years of age: Establishment of reference values. Clinical Chemistry, 47, 17761781.CrossRefGoogle ScholarPubMed
Song, S.K., Sun, S.W., Ju, W.K., Lin, S.J., Cross, A.H., & Neufeld, A.H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage, 20, 17141722.CrossRefGoogle ScholarPubMed
Song, S.K., Sun, S.W., Ramsbottom, M.J., Chang, C., Russell, J., & Cross, A.H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage, 17, 14291436.CrossRefGoogle ScholarPubMed
Stenset, V., Bjørnerud, A., Fjell, A.M., Walhovd, K.B., Hofoss, D., Due-Tønnessen, P., et al. (2009). Cingulum fiber diffusivity and CSF T-tau in patients with subjective and mild cognitive impairment. Neurobiology of Aging, doi:10.1016/j.neurobiolaging.2009.04.014.Google ScholarPubMed
Stenset, V., Grambaite, R., Reinvang, I., Hessen, E., Cappelen, T., Bjørnerud, A., et al. (2007). Diaschisis after thalamic stroke: A comparison of metabolic and structural changes in a patient with amnesic syndrome. Acta Neurologica Scandinavica. Supplementum, 187, 6871.CrossRefGoogle Scholar
Stenset, V., Hofoss, D., Johnsen, L., Skinningsrud, A., Berstad, A.E., Negaard, A., et al. (2008). White matter lesion severity is associated with reduced cognitive performances in patients with normal CSF Aβ42 levels. Acta Neurologica Scandinavica, 118, 373378.CrossRefGoogle ScholarPubMed
Stokin, G.B., Almenar-Queralt, A., Gunawardena, S., Rodrigues, E.M., Falzone, T., Kim, J., et al. (2008). Amyloid precursor protein-induced axonopathies are independent of amyloid-beta peptides. Human Molecular Genetics, 17, 34743486.CrossRefGoogle ScholarPubMed
Stokin, G.B., Lillo, C., Falzone, T.L., Brusch, R.G., Rockenstein, E., Mount, S.L., et al. (2005). Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science, 307, 12821288.CrossRefGoogle ScholarPubMed
Storandt, M. (2008). Cognitive deficits in the early stages of Alzheimer’s disease. Current Directions in Psychological Science, 17, 198202.CrossRefGoogle Scholar
Stroop, J.R. (1935). Studies of interference in serial verbal reaction. Journal of Experimental Psychology, 18, 643662.CrossRefGoogle Scholar
Twamley, E.W., Ropacki, S.A.L., & Bondi, M.W. (2006). Neuropsychological and neuroimaging changes in preclinical Alzheimer’s disease. Journal of the International Neuropsychological Society, 12, 707735.CrossRefGoogle ScholarPubMed
Van Petten, C. (2004). Relationship between hippocampal volume and memory ability in healthy individuals across the lifespan: Review and meta-analysis. Neuropsychologia, 42, 13941413.CrossRefGoogle ScholarPubMed
Wallin, A., Edman, A., Blennow, K., Gottfries, C.G., Karlsson, I., Regland, B., & Sjögren, M. (1996). Stepwise comparative status analysis (STEP): A tool for identification of regional brain syndromes in dementia. Journal of Geriatric Psychiatry and Neurology, 9, 185199.CrossRefGoogle ScholarPubMed
Wechsler, D. (1997). WAIS-III WMS-III technical manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Wechsler, D. (1999 Wechsler Abbreviated Scale of Intelligence (WASI). San Antonio, TX: The Psychological Corporation.Google Scholar
Wechsler, D. (2003). Wechsler Adult Intelligence Scale – Third Edition: Manual. San Antonio, TX: The Psychological Corporation (Norwegian translation).Google Scholar
Wehling, E., Lundervold, A.J., Standnes, B., Gjerstad, L., & Reinvang, I. (2007). APOE status and its assosiation to learning and memory performance in middle aged and older Norwegians seeking assessment for memory deficits. Behavioral Brain Functions, 3, 57.CrossRefGoogle Scholar
Whitwell, J.L., Shiung, M.M., Przybelski, S.A., Weigand, S.D., Knopman, D.S., Boeve, B.F., et al. (2008). MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology, 70, 512520.CrossRefGoogle ScholarPubMed
Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L.O., et al. (2004). Mild cognitive impairment – beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256, 240246.CrossRefGoogle Scholar
Zhang, Y., Schuff, N., Jahng, G.H., Bayne, W., Mori, S., Schad, L., et al. (2007). Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology, 68, 1319.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Grambaite supplementary material

Supplementary table 1

Download Grambaite supplementary material(PDF)
PDF 29.9 KB