Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T17:36:58.440Z Has data issue: false hasContentIssue false

Action Control Deficits in Patients With Essential Tremor

Published online by Cambridge University Press:  03 December 2018

Shelby Hughes
Affiliation:
Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
Daniel O. Claassen
Affiliation:
Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
Wery P.M. van den Wildenberg
Affiliation:
Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands Amsterdam Brain and Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
Fenna T. Phibbs
Affiliation:
Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
Elise B. Bradley
Affiliation:
Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
Scott A. Wylie
Affiliation:
Department of Neurosurgery, University of Louisville, Louisville, Kentucky, Tennessee
Nelleke C. van Wouwe*
Affiliation:
Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee Department of Neurosurgery, University of Louisville, Louisville, Kentucky, Tennessee
*
Correspondence and reprint requests to: Nelleke C. van Wouwe, Human Cognition and Neurophysiology Group, Department of Neurological Surgery, University of Louisville, 220 Abraham Flexner Way, 15th Floor, Louisville, KY 40202

Abstract

Objectives: Essential tremor (ET) is a movement disorder characterized by action tremor which impacts motor execution. Given the disrupted cerebellar-thalamo-cortical networks in ET, we hypothesized that ET could interfere with the control mechanisms involved in regulating motor performance. The ability to inhibit or stop actions is critical for navigating many daily life situations such as driving or social interactions. The current study investigated the speed of action initiation and two forms of action control, response stopping and proactive slowing in ET. Methods: Thirty-three ET patients and 25 healthy controls (HCs) completed a choice reaction task and a stop-signal task, and measures of going speed, proactive slowing and stop latencies were assessed. Results: Going speed was significantly slower in ET patients (649 ms) compared to HCs (526 ms; F(1,56) = 42.37; p <.001; η2 = .43), whereas proactive slowing did not differ between groups. ET patients exhibited slower stop signal reaction times (320 ms) compared to HCs (258 ms, F(1,56) = 15.3; p <.00; η2 = .22) and more severe motor symptoms of ET were associated with longer stopping latencies in a subset of patients (Spearman rho = .48; p <.05). Conclusions: In line with previous studies, ET patients showed slower action initiation. Additionally, inhibitory control was impaired whereas proactive slowing remained intact relative to HCs. More severe motor symptoms of ET were associated with slower stopping speed, and may reflect more progressive changes to the cerebellar-thalamo-cortical network. Future imaging studies should specify which structural and functional changes in ET can explain changes in inhibitory action control. (JINS, 2019, 25, 156–164)

Type
Regular Research
Copyright
Copyright © The International Neuropsychological Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alderson, R.M., Rapport, M.D., & Kofler, M.J. (2007). Attention-deficit/hyperactivity disorder and behavioral inhibition: A meta-analytic review of the stop-signal paradigm. Journal of Abnormal Child Psychology, 35(5), 745758. doi:10.1007/s10802-007-9131-6 Google Scholar
Aron, A., Herz, D., Brown, P., Forstmann, B., & Zaghloul, K. (2016). Frontosubthalamic circuits for control of action and cognition. The Journal of Neuroscience, 36(45), 1148911495.Google Scholar
Bagepally, B.S., Bhatt, M.D., Chandran, V., Saini, J., Bharath, R.D., Vasudev, M.K., … Pal, P.K. (2012). Decrease in cerebral and cerebellar gray matter in essential tremor: A voxel-based morphometric analysis under 3T MRI. Journal of Neuroimaging, 22(3), 275278. doi:10.1111/j.1552-6569.2011.00598.x Google Scholar
Band, G.P.H., van der Molen, M.W., & Logan, G.D. (2003). Horse-race model simulations of the stop-signal procedure. Acta Psychologica, 112(2), 105142.Google Scholar
Bartoli, E., Aron, A.R., & Tandon, N. (2018). Topography and timing of activity in right inferior frontal cortex and anterior insula for stopping movement. Human Brain Mapping, 39(1), 189203.Google Scholar
Beck, A.T., Steer, R.A., & Brown, G.K. (1996). Manual for the Beck Depression Inventory-II. San Antonio, TX: Psychological Corporation.Google Scholar
Benito-León, J., Louis, E., Romero, J., Hernández-Tamames, J., Manzanedo, E., Álvarez-Linera, J., … Onofrj., M. (2015). Altered functional connectivity in essential tremor. Medicine (Baltimore), 94(49), e1936.Google Scholar
Benito-León, J., & Louis, E.D. (2006). Essential tremor: Emerging views of a common disorder. Nature Clinical Practice. Neurology, 2(12), 666678 Google Scholar
Bhalsing, K., Upadhyay, N., Kumar, K., Saini, J., Yadav, R., Gupta, A., & Pal, P. (2014). Association between cortical volume loss and cognitive impairments in essential tremor. European Journal of Neurology, 21(6), 874883.Google Scholar
Bissett, P.G., & Logan, G.D. (2011). Balancing cognitive demands: Control adjustments in the stop-signal paradigm. Journal of Experimental Psychology. Learning, Memory, and Cognition, 37(2), 392404. doi:10.1037/a0021800 Google Scholar
Brunamonti, E., Chiricozzi, F.R., Clausi, S., Olivito, G., Giusti, M.A., Molinari, M., … Leggio, M. (2014). Cerebellar damage impairs executive control and monitoring of movement generation. PLoS One, 9(1), e85997. doi:10.1371/journal.pone.0085997 Google Scholar
Cai, W., Ryali, S., Chen, T., Li, C.S., & Menon, V. (2014). Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: Evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets. The Journal of Neuroscience, 34(44), 1465214667.Google Scholar
Cerasa, A., & Quattrone, A. (2016). Linking essential tremor to the cerebellum-neuroimaging evidence. Cerebellum, 15(3), 263275. doi:10.1007/s12311-015-0739-8 Google Scholar
Delis, D.C., Kaplan, E., and Kramer, J. 2001. Delis Kaplan Executive Function System. San Antonio, TX: The Psychological Corporation.Google Scholar
Fahn, S., Tolosa, E., & Marín, C. (1988). Clinical rating scale for tremor. In J. Jankovic, & E. Tolosa (Eds.), Parkinson’s disease and movement disorders (pp. 225234). Baltimore: Urban and Schwarzenberg.Google Scholar
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.Google Scholar
Hampshire, A., Chamberlain, S.R., Monti, M.M., Duncan, J., & Owen, A.M. (2010). The role of the right inferior frontal gyrus: Inhibition and attentional control. Neuroimage, 50(3), 13131319.Google Scholar
Heldman, D., Jankovic, J., Vaillancourt, D., Prodoehl, J., Elble, R., & Giuffrida, J. (2011). Essential tremor quantification during activities of daily living. Parkinsonism & Related Disorders, 17(7), 537542. doi:10.1016/j.parkreldis.2011.04.017 Google Scholar
Hirose, S., Jimura, K., Kunimatsu, A., Abe, O., Ohtomo, K., Miyashita, Y., & Konishi, S. (2014). Changes in cerebro-cerebellar interaction during response inhibition after performance improvement. Neuroimage, 99, 142148. doi:10.1016/j.neuroimage.2014.05.007 Google Scholar
Hübner, J., Sprenger, A., Klein, C., Hagenah, J., Rambold, H., Zühlke, C., … Helmchen, C. (2007). Eye movement abnormalities in spinocerebellar ataxia type 17 (SCA17). Neurology, 69(11), 11601168. doi:10.1212/01.wnl.0000276958.91986.89 Google Scholar
Hung, Y., Gaillard, S.L., Yarmak, P., & Arsalidou, M. (2018). Dissociations of cognitive inhibition, response inhibition, and emotional interference: Voxelwise ALE meta-analyses of fMRI studies. Human Brain Mapping, 39, 40654082.Google Scholar
Kay, G.G., Schwartz, H.I., Wingertzahn, M.A., Jayawardena, S., & Rosenberg, R.P. (2016). Next-day residual effects of gabapentin, diphenhydramine, and triazolam on simulated driving performance in healthy volunteers: A phase 3, randomized, double-blind, placebo-controlled, crossover trial. Human Psychopharmacology, 31(3), 217226. doi:10.1002/hup.2530 Google Scholar
Kunimatsu, J., Suzuki, T.W., & Tanaka, M. (2016). Implications of lateral cerebellum in proactive control of saccades. The Journal of Neuroscience, 36(26), 70667074. doi:10.1523/JNEUROSCI.0733-16.2016 Google Scholar
Leroi, I., McDonald, K., Pantula, H., & Harbishettar, V. (2012). Cognitive impairment in Parkinson disease: Impact on quality of life, disability, and caregiver burden. Journal of Geriatric Psychiatry and Neurology, 25(4), 208214. doi:10.1177/0891988712464823 Google Scholar
Levitt, H. (1971). Transformed up-down methods in psychoacoustics. The Journal of the Acoustical Society of America, 49(Suppl. 2), 467477.Google Scholar
Lipszyc, J., & Schachar, R. (2010). Inhibitory control and psychopathology: A meta-analysis of studies using the Stop-Signal task. Journal of the International Neuropsychological Society, 16, 10641076.Google Scholar
Logan, G.D. (1994). Spatial attention and the apprehension of spatial relations. Journal of Experimental Psychology: Human Perception and Performance, 20, 10151036.Google Scholar
Louis, E.D. (2009). Essential tremors: A family of neurodegenerative disorders? Archives of Neurology, 66(10), 12021208. doi:10.1001/archneurol.2009.217 Google Scholar
Louis, E.D., Ottman, R., Ford, B., Pullman, S., Martinez, M., Fahn, S., & Hauser, W.A. (1997). The Washington Heights-Inwood Genetic Study of Essential Tremor: Methodologic issues in essential-tremor research. Neuroepidemiology, 16(3), 124133.Google Scholar
Manza, P., Amandola, M., Tatineni, V., Li, C.R., & Leung, H.C. (2017). Response inhibition in Parkinson’s disease: A meta-analysis of dopaminergic medication and disease duration effects. NPJ Parkinson’s Disease, 3, 23. doi:10.1038/s41531-017-0024-2 Google Scholar
Mirabella, G., Pani, P., & Ferraina, S. (2011). Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys. Journal of Neurophysiology, 106(3), 14541466. doi:10.1152/jn.00995.2010 Google Scholar
Olivito, G., Brunamonti, E., Clausi, S., Pani, P., Chiricozzi, F.R., Giamundo, M., … Ferraina, S. (2017). Atrophic degeneration of cerebellum impairs both the reactive and the proactive control of movement in the stop signal paradigm. Experimental Brain Research, 235(10), 29712981. doi:10.1007/s00221-017-5027-z Google Scholar
O’Muircheartaigh, J., Keller, S.S., Barker, G.J., & Richardson, M.P. (2015). White matter connectivity of the thalamus delineates the functional architecture of competing thalamocortical systems. Cerebral Cortex, 25(11), 44774489.Google Scholar
Pauletti, C., Mannarelli, D., De Lucia, M.C., Locuratolo, N., Currà, A., Missori, P., … Fattapposta, F. (2015). Selective attentional deficit in essential tremor: Evidence from the attention network test. Parkinsonism & Related Disorders, 21(11), 13061311. doi:10.1016/j.parkreldis.2015.08.035 Google Scholar
Randolph, C., Tierney, M.C., Mohr, E., & Chase, T.N. (1998). The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Preliminary clinical validity. Journal of Clinical and Experimental Neuropsychology, 20(3), 310319.Google Scholar
Schnitzler, A., Münks, C., Butz, M., Timmermann, L., & Gross, J. (2009). Synchronized brain network associated with essential tremor as revealed by magnetoencephalography. Movement Disorders, 24(11), 16291635.Google Scholar
Sun, C., Wang, Y., Cui, R., Wu, C., Li, X., & Bao, Y. (2018). Human thalamic-prefrontal peduncle connectivity revealed by diffusion spectrum imaging fiber tracking. Frontiers in Neuroanatomy, 12, 24.Google Scholar
Swick, D., Ashley, V., & Turken, U. (2011). Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. Neuroimage, 56(3), 16551665.Google Scholar
Tröster, A., Woods, S., Fields, J., Lyons, K., Pahwa, R., Higginson, C., & Koller, W. (2002). Neuropsychological deficits in essential tremor: An expression of cerebello‐thalamo‐cortical pathophysiology? European Journal of Neurology, 9(2), 143151.Google Scholar
van den Wildenberg, W.P.M., van Boxtel, G.J.M., van der Molen, M.W., Bosch, D.A., Speelman, J.D., & Brunia, C.H.M. (2006). Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson’s disease. Journal of Cognitive Neuroscience, 18, 626636.Google Scholar
van Wouwe, N.C., van den Wildenberg, W.P., Claassen, D.O., Kanoff, K., Bashore, T.R., & Wylie, S.A. (2014). Speed pressure in conflict situations impedes inhibitory action control in Parkinson’s disease. Biological Psychology, 101, 4460. doi:10.1016/j.biopsycho.2014.07.002 Google Scholar
Wylie, S.A., Claassen, D.O., Kanoff, K.E., van Wouwe, N.C., & van den Wildenberg, W.P. (2016). Stopping manual and vocal actions in Tourette’s syndrome. The Journal of Neuropsychiatry and Clinical Neurosciences, appineuropsych15110387. doi:10.1176/appi.neuropsych.15110387 Google Scholar
Wylie, S.A., van den Wildenberg, W.P., Ridderinkhof, K.R., Bashore, T.R., Powell, V.D., Manning, C.A., & Wooten, G.F. (2009). The effect of speed-accuracy strategy on response interference control in Parkinson’s disease. Neuropsychologia, 47(8–9), 18441853. doi:10.1016/j.neuropsychologia.2009.02.025 Google Scholar