Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T05:56:18.192Z Has data issue: false hasContentIssue false

Trajectory of 10-Year Neurocognitive Functioning After Moderate–Severe Traumatic Brain Injury: Early Associations and Clinical Application

Published online by Cambridge University Press:  26 February 2020

Solrun Sigurdardottir*
Affiliation:
Department of Research, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway
Nada Andelic
Affiliation:
Department of Physical Medicine and Rehabilitation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway Institute of Health and Society, Research Centre for Habilitation and Rehabilitation Models and Services (CHARM), Faculty of Medicine, University of Oslo, Oslo, Norway
Cecilie Røe
Affiliation:
Department of Physical Medicine and Rehabilitation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway Institute of Health and Society, Research Centre for Habilitation and Rehabilitation Models and Services (CHARM), Faculty of Medicine, University of Oslo, Oslo, Norway Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
Anne-Kristine Schanke
Affiliation:
Department of Research, Sunnaas Rehabilitation Hospital, Nesoddtangen, Norway
*
*Correspondence and reprint requests to: S. Sigurdardottir, PhD, Department of Research, Sunnaas Rehabilitation Hospital, Bjørnemyrveien 11, Nesoddtangen1450, Norway. Email: sosigu@ous-hf.no

Abstract

Objective:

This study aimed to explore the 10-year trajectories of neurocognitive domains after moderate–severe traumatic brain injury (TBI), to identify factors related to long-term neurocognitive functioning, and to investigate whether performance remained stable or changed over time.

Method:

Seventy-nine patients with moderate–severe TBI between the ages of 16 and 55 years were assessed at 3 months, 1, 5, and 10 years postinjury using neuropsychological tests and functional outcomes. Three hierarchical linear models were used to investigate the relationships of domain-specific neurocognitive trajectories (Memory, Executive function, and Reasoning) with injury severity, demographics, functional outcome at 3 months (Glasgow Outcome Scale-Extended) and emotional distress at 1 year (Symptom Checklist 90-Revised).

Results:

Education, injury severity measures, functional outcome, and emotional distress were significantly associated with both Memory and Executive function. Education and emotional distress were related to Reasoning. The interaction effects between time and these predictors in predicting neurocognitive trajectories were nonsignificant. Among patients with data at 1 and 10 year follow-ups (n = 47), 94–96% exhibited stable scores on Executive function and Reasoning tasks, and 83% demonstrated stable scores on Memory tasks. Significant memory decline was presented in 11% of patients.

Conclusions:

The findings highlight the differential contribution of variables in their relationships with long-term neurocognitive functioning after moderate–severe TBI. Injury severity was important for Memory outcomes, whereas emotional distress influenced all neurocognitive domains. Reasoning (intellectual) abilities were relatively robust after TBI. While the majority of patients appeared to be cognitively stable beyond the first year, a small subset demonstrated a significant memory decline over time.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andelic, N., Sigurdardottir, S., Brunborg, C., & Roe, C. (2008). Incidence of hospital-treated traumatic brain injury in the Oslo population. Neuroepidemiology, 30(2), 120128.CrossRefGoogle ScholarPubMed
Association for the Advancement of Automotive Medicine (1990). The Abbreviated Injury Scale, revision 1998. Des Plains, IL:Association for the Advancement of Automotive Medicine.Google Scholar
Baker, S.P., O’Neill, B., Haddon, W. Jr., & Long, W.B. (1974). The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. The Journal of Trauma, 14(3), 187196.CrossRefGoogle ScholarPubMed
Bercaw, E.L., Hanks, R.A., Millis, S.R., & Gola, T.J. (2011). Changes in neuropsychological performance after traumatic brain injury from inpatient rehabilitation to 1-year follow-up in predicting 2-year functional outcomes. The Clinical Neuropsychologist, 25(1), 7289. doi: 10.1080/13854046.2010.532813CrossRefGoogle ScholarPubMed
Bombardier, C.H., Hoekstra, T., Dikmen, S., & Fann, J.R. (2016). Depression trajectories during the first year after traumatic brain injury. Journal of Neurotrauma, 33(23), 21152124. doi: 10.1089/neu.2015.4349CrossRefGoogle ScholarPubMed
Brown, A.W., Malec, J.F., Mandrekar, J., Diehl, N.N., Dikmen, S.S., Sherer, M., & Novack, T.A. (2010). Predictive utility of weekly post-traumatic amnesia assessments after brain injury: a multicentre analysis. Brain Injury, 24(3), 472478. doi: 10.3109/02699051003610466CrossRefGoogle ScholarPubMed
Christensen, B.K., Colella, B., Inness, E., Hebert, D., Monette, G., Bayley, M., & Green, R.E. (2008). Recovery of cognitive function after traumatic brain injury: a multilevel modeling analysis of Canadian outcomes. Archives of Physical Medicine and Rehabilitation, 89(12), S3S15. doi: 10.1016/j.apmr.2008.10.002CrossRefGoogle ScholarPubMed
Chu, B.C., Millis, S., Arango-Lasprilla, J.C., Hanks, R., Novack, T., & Hart, T. (2007). Measuring recovery in new learning and memory following traumatic brain injury: a mixed-effects modeling approach. Journal of Clinical and Experimental Neuropsychology, 29(6), 617625. doi: 10.1080/13803390600878893CrossRefGoogle ScholarPubMed
Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155159.CrossRefGoogle ScholarPubMed
Corrigan, J.D. & Hammond, F.M. (2013). Traumatic brain injury as a chronic health condition. Archives of Physical Medicine and Rehabilitation, 94(6), 11991201. doi: 10.1016/j.apmr.2013.01.023CrossRefGoogle ScholarPubMed
Dahm, J. & Ponsford, J. (2015). Comparison of long-term outcomes following traumatic injury: what is the unique experience for those with brain injury compared with orthopaedic injury? Injury, 46(1), 142149. doi: 10.1016/j.injury.2014.07.012CrossRefGoogle ScholarPubMed
Delis, D., Kaplan, E., & Kramer, J. (2001). Delis-Kaplan Executive Function System. San Antonio, TX: The Psychological Corporation.Google Scholar
Delis, D., Kaplan, E., Kramer, J., & Ober, B. (2000). California Verbal Learning Test, Second edition. San Antonio, TX: The Psychological Corporation.Google Scholar
Derogatis, L.R. (1983). SCL-90-R. Administration, Scoring and Procedures Manual. Baltimore, MD: Clinical Psychometric Research Inc.Google Scholar
Dikmen, S.S., Corrigan, J.D., Levin, H.S., Machamer, J., Stiers, W., & Weisskopf, M.G. (2009). Cognitive outcome following traumatic brain injury. The Journal of Head Trauma Rehabilitation, 24(6), 430438. doi: 10.1097/HTR.0b013e3181c133e9CrossRefGoogle ScholarPubMed
Dikmen, S.S., Machamer, J.E., Powell, J.M., & Temkin, N.R. (2003). Outcome 3 to 5 years after moderate to severe traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 84(10), 14491457.CrossRefGoogle ScholarPubMed
Donders, J., Tulsky, D.S., & Zhu, J. (2001). Criterion validity of new WAIS-III subtest scores after traumatic brain injury. Journal of the International Neuropsychological Society, 7(7), 892898.CrossRefGoogle ScholarPubMed
Draper, K. & Ponsford, J. (2008). Cognitive functioning ten years following traumatic brain injury and rehabilitation. Neuropsychology, 22(5), 618625. doi: 10.1037/0894-4105.22.5.618CrossRefGoogle ScholarPubMed
D’Souza, A., Mollayeva, S., Pacheco, N., Javed, F., Colantonio, A., & Mollayeva, T. (2019). Measuring change over time: a systematic review of evaluative measures of cognitive functioning in traumatic brain injury. Frontiers in Neurology, 10, 353.CrossRefGoogle ScholarPubMed
Duff, K. (2012). Evidence-based indicators of neuropsychological change in the individual patient: relevant concepts and methods. Archives of Clinical Neuropsychology, 27(3), 248261. doi: 10.1093/arclin/acr120CrossRefGoogle ScholarPubMed
Edlow, B.L., Keene, C.D., Perl, D.P., Iacono, D., Folkerth, R.D., Stewart, W., & Dams-O’Connor, K. (2018). Multimodal characterization of the late effects of traumatic brain injury: a methodological overview of the late effects of traumatic brain injury project. Journal of Neurotrauma, 35(14), 16041619. doi: 10.1089/neu.2017.5457CrossRefGoogle ScholarPubMed
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175191.CrossRefGoogle ScholarPubMed
Finnanger, T.G., Skandsen, T., Andersson, S., Lydersen, S., Vik, A., & Indredavik, M. (2013). Differentiated patterns of cognitive impairment 12 months after severe and moderate traumatic brain injury. Brain Injury, 27(13–14), 16061616. doi: 10.3109/02699052.2013.831127CrossRefGoogle ScholarPubMed
Gautschi, O.P., Huser, M.C., Smoll, N.R., Maedler, S., Bednarz, S., von Hessling, A., & Seule, M.A. (2013). Long-term neurological and neuropsychological outcome in patients with severe traumatic brain injury. Clinical Neurology and Neurosurgery, 115(12), 24822488. doi: 10.1016/j.clineuro.2013.09.038CrossRefGoogle ScholarPubMed
Geytenbeek, M., Fleming, J., Doig, E., & Ownsworth, T. (2017). The occurrence of early impaired self-awareness after traumatic brain injury and its relationship with emotional distress and psychosocial functioning. Brain Injury, 31(13–14), 17911798.CrossRefGoogle ScholarPubMed
Gould, K.R., Ponsford, J.L., Johnston, L., & Schonberger, M. (2011). The nature, frequency and course of psychiatric disorders in the first year after traumatic brain injury: a prospective study. Psychological Medicine, 41(10), 20992109. doi: 10.1017/S003329171100033XCrossRefGoogle ScholarPubMed
Gould, K.R., Ponsford, J.L., & Spitz, G. (2014). Association between cognitive impairments and anxiety disorders following traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 36(1), 114. doi: 10.1080/13803395.2013.863832CrossRefGoogle ScholarPubMed
Grauwmeijer, E., Heijenbrok-Kal, M.H., Peppel, L.D., Hartjes, C.J., Haitsma, I.K., de Koning, I., & Ribbers, G.M. (2018). Cognition, health-related quality of life, and depression ten years after moderate to severe traumatic brain injury: a Prospective Cohort Study. Journal of Neurotrauma, doi: 10.1089/neu.2017.5404CrossRefGoogle ScholarPubMed
Green, R.E., Colella, B., Maller, J.J., Bayley, M., Glazer, J., & Mikulis, D.J. (2014). Scale and pattern of atrophy in the chronic stages of moderate-severe TBI. Frontiers in Human Neuroscience, 8, 67. doi: 10.3389/fnhum.2014.00067CrossRefGoogle ScholarPubMed
Haberg, A.K., Olsen, A., Moen, K.G., Schirmer-Mikalsen, K., Visser, E., Finnanger, T.G., & Eikenes, L. (2015). White matter microstructure in chronic moderate-to-severe traumatic brain injury: impact of acute-phase injury-related variables and associations with outcome measures. Journal of Neuroscience Research, 93(7), 11091126. doi: 10.1002/jnr.23534CrossRefGoogle ScholarPubMed
Hammond, F.M., Hart, T., Bushnik, T., Corrigan, J.D., & Sasser, H. (2004). Change and predictors of change in communication, cognition, and social function between 1 and 5 years after traumatic brain injury. The Journal of Head Trauma Rehabilitation, 19(4), 314328.CrossRefGoogle ScholarPubMed
Marquez de la Plata, C.D., Hart, T., Hammond, F.M., Frol, A.B., Hudak, A., Harper, C.R., O'Neil-Pirozzi, T.M., Whyte, J., Carlile, M., & Diaz-Arrastia, R. (2008). Impact of age on long-term recovery from traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(5), 896903. doi: 10.1016/j.apmr.2007.12.030CrossRefGoogle ScholarPubMed
Hetherington, C.R., Stuss, D.T., & Finlayson, M.A. (1996). Reaction time and variability 5 and 10 years after traumatic brain injury. Brain Injury, 10(7), 473486.CrossRefGoogle ScholarPubMed
Himanen, L., Portin, R., Isoniemi, H., Helenius, H., Kurki, T., & Tenovuo, O. (2006). Longitudinal cognitive changes in traumatic brain injury: a 30-year follow-up study. Neurology, 66(2), 187192. doi: 10.1212/01.wnl.0000194264.60150.d3CrossRefGoogle ScholarPubMed
Isoniemi, H., Tenovuo, O., Portin, R., Himanen, L., & Kairisto, V. (2006). Outcome of traumatic brain injury after three decades- relationship to ApoE genotype. Journal of Neurotrauma, 23(11), 16001608. doi: 10.1089/neu.2006.23.1600CrossRefGoogle ScholarPubMed
Jacobson, N.S. & Truax, P. (1991). Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59(1), 1219.CrossRefGoogle ScholarPubMed
Kaup, A.R., Peltz, C., Kenney, K., Kramer, J.H., Diaz-Arrastia, R., & Yaffe, K. (2017). Neuropsychological profile of lifetime traumatic brain injury in older veterans. Journal of the International Neuropsychological Society, 23(1), 5664. doi: 10.1017/S1355617716000849CrossRefGoogle ScholarPubMed
Kersel, D.A., Marsh, N.V., Havill, J.H., & Sleigh, J.W. (2001). Neuropsychological functioning during the year following severe traumatic brain injury. Brain Injury, 15(4), 283296.CrossRefGoogle ScholarPubMed
Konigs, M., de Kieviet, J.F., & Oosterlaan, J. (2012). Post-traumatic amnesia predicts intelligence impairment following traumatic brain injury: a meta-analysis. Journal of Neurology, Neurosurgery, and Psychiatry, 83(11), 10481055. doi: 10.1136/jnnp-2012-302635CrossRefGoogle ScholarPubMed
Leary, J.B., Kim, G.Y., Bradley, C.L., Hussain, U.Z., Sacco, M., Bernad, M., & Chan, L. (2018). The association of cognitive reserve in chronic-phase functional and neuropsychological outcomes following traumatic brain injury. The Journal of Head Trauma Rehabilitation, 33(1), E28E35. doi: 10.1097/HTR.0000000000000329CrossRefGoogle ScholarPubMed
Levin, H.S., O’Donnell, V.M., & Grossman, R.G. (1979). The galveston orientation and amnesia test. A practical scale to assess cognition after head injury. Journal of Nervous and Mental Disease, 167, 675684.CrossRefGoogle Scholar
Lowenstein, D.H. (2009). Epilepsy after head injury: an overview. Epilepsia, 50(Suppl. 2), 49. doi: 10.1111/j.1528-1167.2008.02004.xCrossRefGoogle ScholarPubMed
Marsh, N.V., Ludbrook, M.R., & Gaffaney, L.C. (2016). Cognitive functioning following traumatic brain injury: a five-year follow-up. NeuroRehabilitation, 38(1), 7178. doi: 10.3233/NRE-151297CrossRefGoogle ScholarPubMed
Masel, B.E. & DeWitt, D.S. (2010). Traumatic brain injury: a disease process, not an event. Journal of Neurotrauma, 27(8), 15291540. doi: 10.1089/neu.2010.1358CrossRefGoogle ScholarPubMed
Meyers, J.E. & Meyers, K.R. (1995). Rey Complex Figure Test and Recognition Trial. Professional Manual. Odessa, FL: Psychological Assessment Resources, Inc.Google Scholar
Miller, L.S., Colella, B., Mikulis, D., Maller, J., & Green, R.E. (2013). Environmental enrichment may protect against hippocampal atrophy in the chronic stages of traumatic brain injury. Frontiers in Human Neuroscience, 7, 506. doi: 10.3389/fnhum.2013.00506CrossRefGoogle ScholarPubMed
Millis, S.R., Rosenthal, M., Novack, T.A., Sherer, M., Nick, T.G., Kreutzer, J.S., & Ricker, J.H. (2001). Long-term neuropsychological outcome after traumatic brain injury. The Journal of Head Trauma Rehabilitation, 16(4), 343355.CrossRefGoogle ScholarPubMed
Mollayeva, T., Mollayeva, S., Pacheco, N., D’Souza, A., & Colantonio, A. (2019). The course and prognostic factors of cognitive outcomes after traumatic brain injury: a systematic review. Neuroscience and Biobehavioral Reviews, doi: 10.1016/j.neubiorev.2019.01.011CrossRefGoogle ScholarPubMed
Padgett, C.R., Summers, M.J., Vickers, J.C., McCormack, G.H., & Skilbeck, C.E. (2016). Exploring the effect of the apolipoprotein E (APOE) gene on executive function, working memory, and processing speed during the early recovery period following traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 38(5), 551560. doi: 10.1080/13803395.2015.1137557CrossRefGoogle ScholarPubMed
Ponsford, J., Draper, K., & Schonberger, M. (2008). Functional outcome 10 years after traumatic brain injury: its relationship with demographic, injury severity, and cognitive and emotional status. Journal of the International Neuropsychological Society, 14(2), 233242. doi: 10.1017/S1355617708080272CrossRefGoogle ScholarPubMed
Ponsford, J.L., Spitz, G., & McKenzie, D. (2016). Using post-traumatic amnesia to predict outcome after traumatic brain injury. Journal of Neurotrauma, 33(11), 9971004. doi: 10.1089/neu.2015.4025CrossRefGoogle ScholarPubMed
Rabin, L.A., Barr, W.B., & Burton, L.A. (2005). Assessment practices of clinical neuropsychologists in the United States and Canada: a survey of INS, NAN, and APA Division 40 members. Archives of Clinical Neuropsychologists, 20(1), 3365. doi: 10.1016/j.acn.2004.02.005CrossRefGoogle ScholarPubMed
Rabinowitz, A.R., Hart, T., Whyte, J., & Kim, J. (2018). Neuropsychological recovery trajectories in moderate to severe traumatic brain injury: influence of patient characteristics and diffuse axonal injury. Journal of the International Neuropsychological Society, 24(3), 237246. doi: 10.1017/S1355617717000996CrossRefGoogle ScholarPubMed
Rassovsky, Y., Levi, Y., Agranov, E., Sela-Kaufman, M., Sverdlik, A., & Vakil, E. (2015). Predicting long-term outcome following traumatic brain injury (TBI). Journal of Clinical and Experimental Neuropsychology, 37(4), 354366. doi: 10.1080/13803395.2015.1015498CrossRefGoogle Scholar
Reitan, R.M. & Wolfson, D. (1985). The Halstead-Reitan Neuropsychological Test Battery. Tuscon, AZ: Neuropsychology Press.Google Scholar
Ruff, R.M., Young, D., Gautille, T., Marshall, L.F., Barth, J., Jane, J.A., Kreutzer, J., Marmarou, A., Levin, H.S., Eisenberg, H.M., & Foulkes, M.A. (1991). Verbal learning deficits following severe head injury: heterogeneity in recovery over 1 year. Journal of Neurosurgery, 75, S50S58.CrossRefGoogle Scholar
Ruttan, L., Martin, K., Liu, A., Colella, B., & Green, R.E. (2008). Long-term cognitive outcome in moderate to severe traumatic brain injury: a meta-analysis examining timed and untimed tests at 1 and 4.5 or more years after injury. Archives of Physical Medicine and Rehabilitation, 89(Suppl. 12), S6976. doi: 10.1016/j.apmr.2008.07.007CrossRefGoogle ScholarPubMed
Schneider, E.B., Sur, S., Raymont, V., Duckworth, J., Kowalski, R.G., Efron, D.T., & Stevens, R.D. (2014). Functional recovery after moderate/severe traumatic brain injury: a role for cognitive reserve?. Neurology, 82(18), 16361642. doi: 10.1212/WNL.0000000000000379CrossRefGoogle ScholarPubMed
Schonberger, M., Ponsford, J., Gould, K.R., & Johnston, L. (2011). The temporal relationship between depression, anxiety, and functional status after traumatic brain injury: a cross-lagged analysis. Journal of the International Neuropsychological Society, 17(5), 781787. doi: 10.1017/S1355617711000701CrossRefGoogle ScholarPubMed
Schultz, R. & Tate, R.L. (2013). Methodological issues in longitudinal research on cognitive recovery after traumatic brain injury: evidence from a systematic review. Brain Impairment, 14(3), 450474. doi: 10.1017/BrImp.2013.24CrossRefGoogle Scholar
Senathi-Raja, D., Ponsford, J., & Schonberger, M. (2010). Impact of age on long-term cognitive function after traumatic brain injury. Neuropsychology, 24(3), 336344. doi: 10.1037/a0018239CrossRefGoogle ScholarPubMed
Shields, G.S., Moons, W.G., Tewell, C.A., & Yonelinas, A.P. (2016). The effect of negative affect on cognition: anxiety, not anger, impairs executive function. Emotion, 16(6), 792797. doi: 10.1037/emo0000151CrossRefGoogle Scholar
Sigurdardottir, S., Andelic, N., Roe, C., & Schanke, A.K. (2009). Cognitive recovery and predictors of functional outcome 1 year after traumatic brain injury. Journal of the International Neuropsychological Society, 15(5), 740750. doi: 10.1017/S1355617709990452CrossRefGoogle ScholarPubMed
Sigurdardottir, S., Andelic, N., Roe, C., & Schanke, A.K. (2013). Depressive symptoms and psychological distress during the first five years after traumatic brain injury: relationship with psychosocial stressors, fatigue and pain. Journal of Rehabilitation Medicine, 45(8), 808814.CrossRefGoogle ScholarPubMed
Sigurdardottir, S., Andelic, N., Wehling, E., Roe, C., Anke, A., Skandsen, T., & Schanke, A.K. (2015). Neuropsychological functioning in a national cohort of severe traumatic brain injury: demographic and acute injury-related predictors. The Journal of Head Trauma Rehabilitation, 30(2), E112. doi: 10.1097/HTR.0000000000000039CrossRefGoogle Scholar
Spitz, G., Ponsford, J.L., Rudzki, D., & Maller, J.J. (2012). Association between cognitive performance and functional outcome following traumatic brain injury: a longitudinal multilevel examination. Neuropsychology, 26(5), 604612. doi: 10.1037/a0029239CrossRefGoogle ScholarPubMed
Strauss, E., Sherman, E.M.S., & Spreen, O. (2006). A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary, Third edition. New York: Oxford University Press.Google Scholar
Sumowski, J.F., Chiaravalloti, N., Krch, D., Paxton, J., & Deluca, J. (2013). Education attenuates the negative impact of traumatic brain injury on cognitive status. Archives of Physical Medicine and Rehabilitation, 94(12), 25622564. doi: 10.1016/j.apmr.2013.07.023CrossRefGoogle ScholarPubMed
Teague, S., Youssef, G.J., Macdonald, J.A., Sciberras, E., Shatte, A., Fuller-Tyszkiewicz, M., & Theme, S.L.S. (2018). Retention strategies in longitudinal cohort studies: a systematic review and meta-analysis. BMC Medical Research Methodology, 18(1), 151. doi: 10.1186/s12874-018-0586-7CrossRefGoogle ScholarPubMed
Teasdale, G. & Jennett, B. (1974). Assessment of coma and impaired consciousness. A practical scale. Lancet, 2(7872), 8184.CrossRefGoogle ScholarPubMed
Till, C., Colella, B., Verwegen, J., & Green, R.E. (2008). Postrecovery cognitive decline in adults with traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(Suppl. 12), S2534. doi: 10.1016/j.apmr.2008.07.004CrossRefGoogle ScholarPubMed
Vasquez, B.P., Tomaszczyk, J.C., Sharma, B., Colella, B., & Green, R.E.A. (2018). Longitudinal recovery of executive control functions after moderate-severe traumatic brain injury: examining trajectories of variability and ex-gaussian parameters. Neurorehabilitation and Neural Repair, 32(3), 191199. doi: 10.1177/1545968318760727CrossRefGoogle ScholarPubMed
Wechsler, D. (1997). Wechsler Adult Intelligence Scale, Third edition. San Antonio, TX: The Psychological Corporation.Google Scholar
Wilson, J.T.L., Pettigrew, L.E.L., & Teasdale, G.M. (1998). Structured interviews for the Glasgow Outcome Scale and the extended Glasgow Outcome Scale: guidelines for their use. Journal of Neurotrauma, 15(8), 573585. doi: 10.1089/neu.1998.15.573CrossRefGoogle ScholarPubMed
Wood, R.L. (2017). Accelerated cognitive aging following severe traumatic brain injury: a review. Brain Injury, 31(10), 12701278. doi: 10.1080/02699052.2017.1332387CrossRefGoogle ScholarPubMed
Wood, R.L. & Rutterford, N.A. (2006). Long-term effect of head trauma on intellectual abilities: a 16-year outcome study. Journal of Neurology, Neurosurgery, and Psychiatry, 77(10), 11801184. doi: 10.1136/jnnp.2006.091553CrossRefGoogle ScholarPubMed
Wood, R.L. & Worthington, A. (2017). Neurobehavioral abnormalities associated with executive dysfunction after traumatic brain injury. Frontiers in Behavioral Neuroscience, 11, 195. doi: 10.3389/fnbeh.2017.00195CrossRefGoogle ScholarPubMed
Zaninotto, A.L., Vicentini, J.E., Solla, D.J., Silva, T.T., Guirado, V.M., Feltrin, F., & Paiva, W.S. (2017). Visuospatial memory improvement in patients with diffuse axonal injury (DAI): a 1-year follow-up study. Acta Neuropsychiatrica, 29(1), 3542. doi: 10.1017/neu.2016.29CrossRefGoogle ScholarPubMed
Supplementary material: File

Sigurdardottir et al. supplementary material

Table S1 and Figure S1

Download Sigurdardottir et al. supplementary material(File)
File 167.6 KB