Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T09:24:34.615Z Has data issue: false hasContentIssue false

A Biological Study of Fucus Vesiculosus L. and F. Serratus L.

Published online by Cambridge University Press:  11 May 2009

Margery Knight
Affiliation:
From the Department of Botany, University of Liverpool
Mary Parke
Affiliation:
Botanist at the Plymouth Laboratory

Extract

A certain variation in level of the fucoid zone with latitude is demonstrated. The belt of Fucus vesiculosus and F. serratus lies lower on the Devon coast than on either the Manx or the Argyll coast.

The conditions for the optimum germination of fertilized eggs are dissimilar to those for maximum rate of frond-extension.

Normal growth-rates have been established for both species for the first 3 years of life. In F. vesiculosus the average rate of elongation per week is 0·48 cm. on the Devon coast, 0·45 cm. on the Manx coast and 0·68 cm. on the Argyll coast. In F. serratus the average rate of elongation per week is 0·49 cm. on the Devon coast, 0·68 cm. on the Manx coast and 0·85 cm. on the Argyll coast. The rate of growth is shown to vary with the conditions of the environment. Shelter from rough water tends to enhance growth-rate, and there is an indication that greater stature is achieved by the plants from the Argyll station than from either of the other stations.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1950

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Colman, J., 1933. The nature of the intertidal zonation of plants and animals. Journ. Mar. Biol. Assoc., Vol. xviii, pp. 435–76.CrossRefGoogle Scholar
Cotton, A. D., 1912. Marine Algae. Clare Island Survey, Pt. 15. Proc. Roy. Irish Acad., Vol. 31, pp. 1178.Google Scholar
Evans, R. G., 1947. The intertidal ecology of selected localities in the Plymouth neighbourhood. Journ. Mar. Biol. Assoc., Vol. xxvii, pp. 173218.CrossRefGoogle Scholar
Gail, F. W., 1918. Some experiments with Fucus to determine the factors controlling its vertical distribution. Puget Sound Mar. Sta. Publ., Vol. 2, pp. 139–51.Google Scholar
Gard, M., 1916. Le Fucus ceranoides et les hybrides dans le genre Fucus. Bordeaux.Google Scholar
Gislán, T., 1930. Epibioses of the Gullmar Fjord, etc. II. Kristinebergs Zool. Stat. 18771927 (Skriftserie utg. K. Svensk. Vet. Akad.), Uppsala, No. 4, 380 pp.Google Scholar
Hariot, P., 1909. Sur la croissance des Fucus. C.R. Acad. Sci., Paris, T. 149, pp. 352–4Google Scholar
Hatton, H., 1932. Quelques observations sur le repeuplement en Fucus vesiculosus des surfaces rocheuses denudees. Bull. Lab. Mark. Saint-Servan, T. 9, pp. 16.Google Scholar
Lemoine, P., 1913. Quelques experiences sur la croissance des Algues marines à Roscoff. Bull. Inst. Océanogr. Monaco, No. 277, pp. 119.Google Scholar
Lodge, S. M., 1948. Algal growth in the absence of Patella on an experimental strip of foreshore, Port St Mary, Isle of Man. Proc. and Trans. Liverpool Biol. Soc., Vol. 56, pp. 7883.Google Scholar
Lund, S., 1936. On the production of matter and the growth in some benthic plants. Rep. Danish Biol. Stat., Vol. 41, pp. 3752. Copenhagen.Google Scholar
Nienburg, W., 1930. Die Algenbesiedelung des Felsstrandes und der Klippen von Helgoland. II. Die Algen. Wiss. Meeresunters., Helgoland, N.F., Bd. 15, No. 19, pp. 115.Google Scholar
Printz, H., 1926. Die Algenvegetation des Trondhjemsf jorden. Skr. Norske Vidensk-Akad., Mat.-Nat. Kl., No. 5, pp. 1273.Google Scholar
Rees, T. K., 1932. A note on the longevity of certain species of the Fucaceae. Ann. Bot., Vol. 46, pp. 1063–4.Google Scholar
Sauvageau, C., 1920. Utilisation des algues marines. 394 pp. Paris.Google Scholar