Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T05:25:25.851Z Has data issue: false hasContentIssue false

Gill Symbionts in Thyasirids and Other Bivalve Molluscs

Published online by Cambridge University Press:  11 May 2009

Eve C. Southward
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB

Extract

Prokaryote organisms have been found in the gills of six species of Thyasiridae, collected in the north-east Atlantic region, from depths of 15 to 1250 m. The fine structure of the gill epithelia and the symbiotic Gram-negative bacteria is described. The bacteria occur extracellularly, between a thin cuticle and the apical membrane of the host cell. This differs from the intracellular position of bacterial symbionts in two lucinid species, Lucinoma borealis and Myrtea spinifera, and many other bivalves already known to harbour symbionts in their gills. Four species of Thyasiridae and Diplodonta rotundata, a member of the closely related family Ungulinidae, were found to lack gill symbionts.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. A., 1958. On the basic form and adaptations to habitat in the Lucinacea (Eulamellibranchia). Philosophical Transactions of the Royal Society (B), 241, 421484.Google Scholar
Allen, J. A., 1983. The recent Bivalvia: their form and evolution. In The Mollusca (ed. Russell-Hunter, W. D.), pp. 337403. London: Academic Press.Google Scholar
Berg, C. J. & Alatolo, P., 1984). Potential of chemosynthesis in molluscan mariculture. Aquaculture, 39 165179.CrossRefGoogle Scholar
Blacknell, W. M. & Ansell, A. D., 1974. The direct development of bivalve Thyasira gouldi (Philippi). Thalassia jugoslavica, 10, 23—43.Google Scholar
Cavanaugh, C. M., 1983. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature, London, 302, 5861.CrossRefGoogle Scholar
Cavanaugh, C. M., 1985. Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Bulletin of the Biological Society of Washington, no. 6, 373388.Google Scholar
Dando, P. R. & Southward, A. J., 1986. Chemoautotrophy in bivalve molluscs of the genus Thyasira. Journal of the Marine Biological Association of the United Kingdom, 66, 915929.CrossRefGoogle Scholar
Dando, P. R., Southward, A. J. & Southward, E. C., 1986. Chemoautotrophic symbionts in the gills of the bivalve mollusc Lucinoma borealis and the sediment chemistry of its habitat. Proceedings of the Royal Society (B), 227, 227247.Google Scholar
Dando, P. R., Southward, A. J., Southward, E. C. & Barrett, R. L., 1986. Possible energy sources for chemoautotrophic prokaryotes symbiotic with invertebrates from a Norwegian fjord. Ophelia, 66, 915929. in press.Google Scholar
Dando, P. R., Southward, A. J., Southward, E. C., Terwilliger, N. B. & Terwilliger, R. C., 1985. Sulphur-oxidising bacteria and haemoglobin in gills of the bivalve mollusc Myrtea spinifera. Marine Ecology - Progress Series, 23, 85—98.CrossRefGoogle Scholar
De Burgh, M. E. & Singla, C. L., 1984. Bacterial colonisation and endocytosis on the gill of a new limpet species from a hydrothermal vent. Marine Biology, 84, 16.CrossRefGoogle Scholar
Felbeck, H., 1983. Sulfide oxidation and carbon fixation by the gutless clam Solemya reidi: an animal—bacteria symbiosis. Journal of Comparative Physiology, 152, (B), 311.CrossRefGoogle Scholar
Felbeck, H., Childress, J. J. & Somero, G. N., 1981. Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature, London, 293 291293.CrossRefGoogle Scholar
Fiala-Medioni, A., 1984. Mise en èvidence par microscopie électronique à transmission de l'abondance de bactéries symbiotiques dans la branchie de mollusques bivalves de sources hydrothermales profondes. Compte rendu hebdomadaire des séances de l'Académie des sciences (sér. III), 298, 487492.Google Scholar
Fiala-Medioni, A. & Metivier, C., 1986. Ultrastructure of the gill of the hydrothermal vent bivalve Calyptogena magnifica, with a discussion of its nutrition. Marine Biology, 90, 215222.CrossRefGoogle Scholar
Fisher, M. & Hand, C., 1984. Chemoautotrophic symbionts in the bivalve Lucina floridana from seagrass beds. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 167, 445459.CrossRefGoogle ScholarPubMed
Giere, O., 1985. Structure and position of bacterial endosymbionts in the gill filaments of Lucinidae from Bermuda (Mollusca, Bivalvia). Zoomorphology, 105 296301.CrossRefGoogle Scholar
Hayat, M. A., 1981. Fixation for Electron Microscopy. London: Academic Press.CrossRefGoogle Scholar
Haygood, M. G. & Nealson, K. H., 1985. The effect of iron on growth and luminescence of the symbiotic bacterium Vibrio fischeri. Symbiosis, 1, 3951.Google Scholar
Jackson, J. B. C., 1972. The ecology of the molluscs of Thalassia communities, Jamaica, West Indies. II. Molluscan population variability along an environmental stress gradient. Marine Biology, 14, 304337.CrossRefGoogle Scholar
Johannessen, P. J., 1981. Byfjordsundersøkelsen. Resipientundersøkelse av fjordene rundt Bergen. Rapport nr 1. Tidsrommet fra Oktober 1979 til og med Desember 1980. Statlig program for forurensningsovervdking. Bergen kommune.Google Scholar
Kauffman, E. G., 1967. Cretaceous Thyasira from the western interior of North America. Smithsonian Miscellaneous Collections, no. 152, 159 pp.Google Scholar
Le Pennec, M. & Hily, A., 1984. Anatomie, structure et ultrastructure de la branchie d'un Mytilidae des sites hydrothermaux du Pacifique oriental. Oceanologica acta, 7, 517—523.Google Scholar
Le Pennec, M., Prieur, D. & Lucas, A., 1985. Studies on the feeding of a hydrothermal vent mytilid from the East Pacific Rise. In Proceedings of the 19th European Marine Biology Symposium, Plymouth, 1984 (ed. Gibbs, P. E.), pp. 159–166. Cambridge University Press.Google Scholar
Powell, M. A. & Somero, G. N., 1985. Sulfide oxidation occurs in the animal tissue of the gutless clam, Solemya reidi. Biological Bulletin. Marine Biological Laboratory, Woods Hole, Mass., 169, 164181.CrossRefGoogle Scholar
Rogers, H. J., 1983. Bacterial Cell Structure. Wokingham: Van Nostrand Reinhold (UK).Google Scholar
Sharifi, E., 1984. Parasitic origins of nitrogen-fixing Rhizobium-legume symbioses. A review of the evidence. BioSystems, 16, 269289.CrossRefGoogle Scholar
Southward, A. J., Southward, E. C., Dando, P. R., Barrett, R. L. & Ling, R., 1986. Chemoautotrophic function of bacterial symbionts in small Pogonophora. Journal of the Marine Biological Association of the United Kingdom, 66, 415—437.CrossRefGoogle Scholar
Spiro, B., Greenwood, P. B., Southward, A. J. & Dando, P. R., 1986. 13C/12C ratios in marine invertebrates from reducing sediments: confirmation of nutritional importance of chemoautotrophic endosymbiotic bacteria. Marine Ecology - Progress Series, 28, 223240.CrossRefGoogle Scholar
Strohl, W. R., Geffers, I. & Larkin, J. M. 1981. Structure of the sulphur inclusion envelopes from four beggiatoas. Current Microbiology, 6, 75—79.CrossRefGoogle Scholar
Vetter, R. D., 1985. Elemental sulfur in the gills of three species of clams containing chemoautotrophic symbiotic bacteria: a possible inorganic energy storage compound. Marine Biology, 88, 3342.CrossRefGoogle Scholar
Weinberg, E. D., 1984. Iron witholding: a defense against infection and neoplasia. Physiological Reviews, 64 65102.CrossRefGoogle Scholar
Whatley, F. R. & Whatley, J. M., 1983. Pelomyxa palustris. In Endocytobiology II (ed. Schenk, H. E. A. and Schwemmler, W.), pp. 413426. Berlin: de Gruyter.Google Scholar
Wittenberg, J. B., 1985. Oxygen supply to intracellular bacterial symbionts. Bulletin of the Biological Society of Washington, no. 6 301310.Google Scholar
Wright, S. H., Southwell, K. M. & Stephens, G. C., 1984. Autoradiographic analysis of amino acid uptake by the gill of Mytilus. Journal of Comparative Physiology, 154(B), 249256.CrossRefGoogle Scholar