Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-16T02:48:23.776Z Has data issue: false hasContentIssue false

Modelling of a planktonic ecosystem in an enclosed water column

Published online by Cambridge University Press:  11 May 2009

Valérie Andersen
Affiliation:
Station Zoologique, C.E.R.O.V., La Darse, B.P. 28, 06230 Villefranche-sur-Mer, France
Paul Nival
Affiliation:
Station Zoologique, C.E.R.O.V., La Darse, B.P. 28, 06230 Villefranche-sur-Mer, France
Roger P. Harris
Affiliation:
The Laboratory, Marine Biological Association, Citadel Hill, Plymouth PL1 2PB

Extract

The analysis of the complex trophic relations characteristic of plankton communities is much simpler in an isolated body of water than in the open sea. In fact, in the open sea physical processes make many biological phenomena difficult to recognize, and advection and turbulence generally make it impossible to sample repetitively the same population of organisms for long periods of time.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou, Debs C., 1979. Aspect de la Physiologie de Temora stylifera Dana (Copepode Calanoida): Éléments du Bilan en Carbone et Azote et Optimisation de la Fertilité. These de 3ème cycle, Océanographie biologique, Université Paris VI.Google Scholar
Alldredge, A. L., 1981. The impact of appendicularian grazing on natural food concentrations in situ. Limnology and Oceanography, 26, 247257.CrossRefGoogle Scholar
Andersen, V., 1985. Modélisation d'Ecosystèmes Pélagiques. Etude de Processus. Thèse de Doctorat de l'Université Paris VI, Océanographie biologique.Google Scholar
Bienfang, P. K., 1982. Phytoplankton sinking-rate dynamics in enclosed experimental ecosystems. In Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems (ed. Grice, G. D. and Reeve, M. R.), pp. 261274. New York: Springer-Verlag.CrossRefGoogle Scholar
Blasco, D., 1978. Observations on the diel migration of marine dinoflagellates off the Baja California coast. Marine Biology, 46, 4147.CrossRefGoogle Scholar
Bonin, D. J. & Maestrini, S. Y., 1981. Importance of organic nutrients for phytoplankton growth in natural environments: implications for algal species succession. Canadian Bulletin of Fisheries and Aquatic Sciences, no. 210, 279291.Google Scholar
Bonin, D. J., Maestrini, S. Y. & Leftley, J. W., 1981. Some processes and physical factors that affect the ability of individual species of algae to compete for nutrient partition. Canadian Bulletin of Fisheries and Aquatic Sciences, no. 210, 292309.Google Scholar
Boucher, J., Razouls, C. & Razouls, S., 1976. Composition chimique élémentaire en carbone et azote de Centropages typicus et Temora stylifera. Analyse des variations en fonction de la physiologie et des conditions écologiques. Cahiers de biologie marine, 17, 3743.Google Scholar
Capriulo, G. M. & Carpenter, E. J., 1980. Grazing by 35 to 202 µm microzooplankton in Long Island Sound. Marine Biology, 56, 319326.CrossRefGoogle Scholar
Cloern, J. E., 1977. Effects of light intensity and temperature on Cryptomonas ovata (Cryptophyceae) growth and nutrient uptake rates. Journal of Phycology, 13, 389395.CrossRefGoogle Scholar
Conover, R. J., 1966. Factors affecting the assimilation of organic matter by zooplankton and the question of superfluous feeding. Limnology and Oceanography, 11, 346354.CrossRefGoogle Scholar
Dallot, S., 1974. L'alimentation des Chaetognathes. Océanis, 1, 119.Google Scholar
Davis, C. O., 1982. The importance of understanding phytoplankton life strategies in the design of enclosure experiments. In Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems (ed. Grice, G. D. and Reeve, M. R.), pp. 323332. New York: Springer-Verlag.CrossRefGoogle Scholar
Droop, M. R., 1974. The nutrient status of algal cells in continuous culture. Journal of the Marine Biological Association of the United Kingdom, 54, 825—855.CrossRefGoogle Scholar
Droop, M. R., 1975. The nutrient status of algal cells in batch culture. Journal of the Marine Biological Association of the United Kingdom, 55, 541555.CrossRefGoogle Scholar
Eng-Wilmot, D. L., Hitchcock, W. S. & Martin, D. F., 1977. Effect of temperature on the proliferation of Gymnodinium breve and Gomphosphaeria aponina. Marine Biology, 41, 7177.CrossRefGoogle Scholar
Eppley, R. W., Rogers, J. W. & McCarthy, J. J., 1969. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnology and Oceanography, 14, 912920.CrossRefGoogle Scholar
Fenchel, T., 1982. Ecology of heterotrophic microflagellates. Some important forms and their functional morphology. Marine Ecology — Progress Series, 8, 211223.CrossRefGoogle Scholar
Frost, B. W., 1977. Feeding behaviour of Calanus pacificus in mixtures of food particles. Limnology and Oceanography, 22, 472491.CrossRefGoogle Scholar
Galt, C. P., 1972. Development ofOikopleura dioica (Urochordate: Larvacea): Ontogeny of Behavior and of Organ Systems Related to Construction and Use of the House. Ph.D. Thesis, University of Washington.Google Scholar
Grice, G. D., 1980. Controlled ecosystem populations experiment: biological and chemical data for Foodweb I experiment. Technical Report. Woods Hole Oceanographie Institution, no. WHOI-80–42, 367 pp.Google Scholar
Grice, G. D., Harris, R. P., Reeve, M. R., Heinbokel, J. F. & Davis, C. O., 1980. Large-scale enclosed water-column ecosystems. An overview of Foodweb I, the final CEPEX experiment. Journal of the Marine Biological Association of the United Kingdom, 60, 401414.CrossRefGoogle Scholar
Grice, G. D. & Reeve, M. R. (ed.), 1982. Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems. New York: Springer-Verlag.Google Scholar
Harris, R. P., 1982. Comparison of the feeding behaviour of Calanus and Pseudocalanus in two experimentally manipulated enclosed ecosystems. Journal of the Marine Biological Association of the United Kingdom, 62, 7191.CrossRefGoogle Scholar
Harris, R. P., Reeve, M. R., Grice, G. D., Evans, G. T., Gibson, V. R., Beers, J. R. & Sullivan, B. K., 1982. Trophic interactions and production processes in natural zooplankton communities in enclosed water columns. In Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems (ed. Grice, G. D. and Reeve, M. R.), pp. 353387. New York: Springer-Verlag.CrossRefGoogle Scholar
Harrison, P. J., Conway, H. L. & Dugdale, R. C., 1976. Marine diatoms grown in chemostats under silicate or ammonium limitation. I. Cellular chemical composition and steady-state growth kinetics of Skeletonema costatum. Marine Biology, 35, 177186.CrossRefGoogle Scholar
Harrison, P. J., Conway, H. L., Holmes, R. W. & Davis, C. O., 1977. Marine diatoms grown in chemostats under silicate or ammonium limitation. III. Cellular chemical composition and morphology of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida. Marine Biology, 43, 1931.CrossRefGoogle Scholar
Harrison, P. J. & Turpin, D. H., 1982. The manipulation of physical, chemical and biological factors to select species from natural phytoplankton communities. In Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems (ed. Grice, G. D. and Reeve, M. R.), pp. 275289. New York: Springer-Verlag.CrossRefGoogle Scholar
Horwood, J., 1982. Algal production in the west-central North Sea. Journal of Plankton Research, 4, 103124.CrossRefGoogle Scholar
Ikeda, T., 1974. Nutritional ecology of marine zooplankton. Memoirs of the Faculty of Fisheries, Hokkaido University, 22, 197.Google Scholar
Ikeda, T., Hing, Fay E., Hutchinson, S. A. & Boto, G. M., 1982. Ammonia and inorganic phosphate excretion by zooplankton from inshore waters of the Great Barrier Reef, Queensland. I. Relationship between excretion rates and body size. Australian Journal of Marine and Freshwater Research, 33, 5570.CrossRefGoogle Scholar
Ivlev, V. S., 1955. Experimental Ecology of the Feeding of Fishes. New Haven: Yale University Press (1961).Google Scholar
Jitts, H. R., McAllister, C. D., Stephens, K. & Strickland, J. D. H., 1964. The cell division rates of some marine phytoplankters as a function of light and temperature. Journal of the Fisheries Research Board of Canada, 21, 139157.CrossRefGoogle Scholar
Kamykowski, D. & Zentara, S.-J., 1977. The diurnal vertical migration of motile phytoplankton through temperature gradients. Limnology and Oceanography, 22, 148151.CrossRefGoogle Scholar
King, K. R., 1982. The population biology of the larvacean Oikopleura dioica in enclosed water column. In Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems (ed. Grice, G. D. and Reeve, L. R.), pp. 341351. New York: Springer-Verlag.CrossRefGoogle Scholar
King, K. R., Hollibaugh, J. T. & Azam, F., 1980. Predator-prey interactions between the larvacean Oikopleura dioica and bacterioplankton in enclosed water column. Marine Biology, 56, 4957.CrossRefGoogle Scholar
Kremer, P., 1977. Respiration and excretion by the ctenophore Mnemiopsis leidyi. Marine Biology, 44, 4350.CrossRefGoogle Scholar
McAllister, C. D., 1970. Zooplankton rations, phytoplankton mortality and the estimation of marine production. In Marine Food Chains (ed. Steele, J. H.), pp. 419457. Edinburgh: Oliver and Boyd.Google Scholar
Miller, C. A. & Landry, M. R., 1984. Ingestion-independent rates of ammonium excretion by the copepod Calanus pacificus. Marine Biology, 78, 265—270.CrossRefGoogle Scholar
Moal, J., Martin-Jezequel, V., Harris, R. P., Samain, J. F. & Poulet, S. A., 1987. Interspecific and intraspecific variability of the chemical composition of marine phytoplankton Oceanologica acta, in press.CrossRefGoogle Scholar
Morgan, K. C. & Kalff, J., 1979. Effect of light and temperature interactions on growth of Cryptomonas erosa (Cryptophyceae). Journal of Phycology, 15, 127134.CrossRefGoogle Scholar
Nival, P., 1976. Relations Phytoplancton-zooplancton; Essai de Modélisation. Thèse de Doctorat d'Etat, Sciences Naturelles, Université Paris VI.Google Scholar
Nival, P., Malara, G., Charra, R., Palazzoli, I. & Nival, S., 1974. Etude de la respiration et de l'excrétion de quelques copépodes planctoniques (Crustacea) dans la zone de remontée d'eau profonde des côtes marocaines. Journal of Experimental Marine Biology and Ecology, 15, 231260.CrossRefGoogle Scholar
Paasche, E., 1973 a. Silicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) grown in a chemostat with silicate as limiting nutrient. Marine Biology, 19, 117126.CrossRefGoogle Scholar
Paasche, E., 1973 b. Silicon and the ecology of marine plankton diatoms. II. Silicate uptake kinetics in five diatom species. Marine Biology, 19, 262269.CrossRefGoogle Scholar
Paasche, E., 1980. Silicon content of five marine plankton diatom species measured with a rapid filter method. Limnology and Oceanography, 25, 447480.CrossRefGoogle Scholar
Paffenhöfer, G.-A., 1976. On the biology of Appendicularia of the southeastern North Sea. In Population Dynamics of Marine Organisms in Relation with Nutrient Cycling in Shallow Waters, vol. 2. Proceedings of the 10th European Symposium on Marine Biology, Ostend, Belgium, 1975 (ed. Persoone, G. and Jaspers, E.), pp. 437455. Wetteren, Belgium: Universa Press.Google Scholar
Pagano, M., 1980. Biologie d'un Copépode des Eaux Saumâtres Temporaires de la Région Méditerranéenne, Eurytemora velox (Lilljeborg, 1853): Bilan Énergétique et Cycle Vital. Thèse de 3ème cycle, Océanologie biologique, Université Aix-Marseille II.Google Scholar
Parker, A., 1974. Empirical functions relating metabolic processes in aquatic systems to environ-mental variables. Journal of the Fisheries Research Board of Canada, 31, 15501552.CrossRefGoogle Scholar
Parsons, T. R., Lebrasseur, R. J. & Fulton, J. D., 1967. Some observations on the dependence of zooplankton grazing on cell size and concentration of phytoplankton blooms. Journal of the Oceanographical Society of Japan, 23, 1017.CrossRefGoogle Scholar
Pearre, J. R., 1973. Vertical migration and feeding in Sagitta elegans Verrill. Ecology, 54, 300314.CrossRefGoogle Scholar
Peeters, J. C. H. & Eilers, P., 1978. The relationship between light intensity and photosynthesis. A simple mathematical model. Hydrobiological Bulletin, 12, 134136.CrossRefGoogle Scholar
Platt, T., Gallegos, C. L. & Harrison, W. G., 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. Journal of Marine Research, 38, 686701.Google Scholar
Poulet, S. A. & Marsot, P., 1978. Chemosensory grazing by marine calanoid copepods (Arthropoda: Crustacea). Science, New York, 200, 14031405.CrossRefGoogle ScholarPubMed
Rassoulzadegan, F., 1982. Le Rôle Fonctionnel du Microzooplancton dans un Écosystéme Méditerranéen. Thèse de Doctoral d'Etat, Sciences Naturelles, Université Paris VI.Google Scholar
Reeve, M. R., 1980. Comparative experimental studies on the feeding of chaetognaths and ctenophores. Journal of Plankton Research, 2, 381393.CrossRefGoogle Scholar
Reeve, M. R., Walter, M. A. & Ikeda, T., 1978. Laboratory studies of ingestion and food utilization in lobate and tentaculate ctenophores. Limnology and Oceanography, 23, 740751.CrossRefGoogle Scholar
Rhee, G. Y., 1978. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnology and Oceanography, 23, 1025.CrossRefGoogle Scholar
Ryther, J. H., 1956. Photosynthesis in the ocean as a function of light intensity. Limnology and Oceanography, 1, 6170.CrossRefGoogle Scholar
Sibley, T. H., Herrgesell, P. L. & Knight, A. W., 1974. Density-dependent vertical migration in the freshwater dinoflagellate Peridinium penardii (Lemm.) Lemm. fo. californicum Javorn. Journal of Phycology, 10, 475476.Google Scholar
Smayda, T. J., 1970. The suspension and sinking of phytoplankton in the sea. Oceanography and Marine Biology, an Annual Review, 8, 353—414.Google Scholar
Strickland, J. D. H. & Terhune, L. D. B., 1961. The study of in situ marine photosynthesis using a large plastic bag. Limnology and Oceanography, 6, 9396.CrossRefGoogle Scholar
Takahashi, M., Koike, I., Iseki, K., Bienfang, P. K. & Hattori, A., 1982. Phytoplankton species responses to nutrient changes in experimental enclosures and coastal waters. In Marine Mesocosms. Biological and Chemical Research in Experimental Ecosystems (ed. Grice, G. D. and Reeve, M. R.), pp. 332340. New York: Springer-Verlag.Google Scholar
Walters, R. A., 1980. A time- and depth-dependent model for physical, chemical and biological cycles in temperate lakes. Ecological Modelling, 8, 7996.CrossRefGoogle Scholar