Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-14T05:40:03.810Z Has data issue: false hasContentIssue false

Validation of the first annulus and growth model fit for the cardinalfish (Epigonus crassicaudus)

Published online by Cambridge University Press:  24 August 2018

Guillermo Moyano*
Affiliation:
División de Investigación Pesquera, Instituto de Fomento Pesquero (IFOP), Blanco Encalada 839 Valparaíso, Chile Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Avda. Altamirano 1480 Valparaíso, Chile
Francisco Cerna
Affiliation:
División de Investigación Pesquera, Instituto de Fomento Pesquero (IFOP), Blanco Encalada 839 Valparaíso, Chile
Vilma Ojeda
Affiliation:
División de Investigación Pesquera, Instituto de Fomento Pesquero (IFOP), Blanco Encalada 839 Valparaíso, Chile
Guido Plaza
Affiliation:
Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Avda. Altamirano 1480 Valparaíso, Chile
*
Author for correspondence: Guillermo Moyano Email: guillermo.moyano@ifop.cl

Abstract

Age and growth parameters were estimated for the deep-sea cardinalfish (Epigonus crassicaudus) from sagittal otoliths collected between 2012 and 2015 onboard commercial fishing vessels from the South-east Pacific off Chile between 33°04′S and 41°46′S. Von Bertalanffy growth parameters (VBGP) were estimated from assumed annual otolith growth zone counts. The verification of the first annulus of sagittal otoliths was determined by examining in detail daily micro-increments. These data helped inform the interpretation of the annual growth zones from transverse otolith sections. The von Bertalanffy growth model estimated to length-at-age data were asymptotic length (L) of 34.1 cm fork length (FL), a growth coefficient (k) of 0.1 cm/year and a t-zero (t0) of −0.85. The maximum ages observed were 67 and 65 years for female and male fish, respectively.

Type
Review
Copyright
Copyright © Marine Biological Association of the United Kingdom 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, A and Tracey, D (2007) Age Validation of Orange Roughy and Black Cardinalfish using Lead-radium Dating. Final Report for Ministry of Fisheries Research Project DEE2005-02. Objective 1. Christchurch, New Zealand: National Institute of Water and Atmospheric Research.Google Scholar
Beamish, R and Fournier, E (1981) A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences 38, 982983. doi: 10.1139/f81-132.Google Scholar
Beckman, D and Calfee, J (2014) Timing of first annulus formation in white sucker otoliths. North American Journal of Fisheries Management 34, 11871189. doi: 10.1080/02755947.2014.951809.Google Scholar
Campana, S (2001) Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology 59, 197242.Google Scholar
Campana, S, Annad, M and McMillan, J (1995) Graphical and statistical methods for determining the consistency of age determinations. Transactions of the American Fisheries Society 124, 131138.Google Scholar
Canales, M and Leal, E (2009) Parámetros de historia de vida de la anchoveta Engraulis ringens Jenyns, 1842, en la zona centro norte de Chile. Revista Biologia Marina y Oceanografía 44, 173179.Google Scholar
Candy, S, Constable, A, Lamb, T and Williams, R (2007) A von Bertalanffy growth model for toothfish at Heard Island fitted to length-at-age data and compared to observed growth from mark-recapture studies. CCAMLR Science 144, 4366.Google Scholar
Catalano, C, Matthew, J and Allen, M (2010) A size- and age-structured model to estimate fish recruitment, growth, mortality, and gear selectivity. Fisheries Research 105, 3845.Google Scholar
Chang, W (1982) A statistical method for evaluating the reproducibility of age determination. Canadian Journal of Fisheries and Aquatic Sciences 39, 12081210.Google Scholar
Contreras-Reyes, J and Arellano-Valle, R (2013) Growth estimates of cardinalfish (Epigonus crassicaudus) based on scale mixtures of skew-normal distributions. Fisheries Research 147, 137144. doi: 10.1016/j.fishres.2013.05.002.Google Scholar
Cubillos, L, Aguayo, M, Neira, M, Sanhueza, E and Castillo-Jordán, C (2009) Verificación de la edad y crecimiento de besugo Epigonus crassicaudus (de Buen, 1959) admitiendo error en la determinación de la edad. Revista Biologia Marina y Oceanografía 44, 417427.Google Scholar
Francis, R (1990) Back-calculation of fish length: a critical review. Journal of Fish Biology 36, 883902.Google Scholar
Francis, R (2016) Growth in age-structured stock assessment models. Fisheries Research 180, 7786.Google Scholar
Gálvez, M, Rebolledo, H, Pino, C, Cubillos, L, Sepúlveda, A and Rojas, A (2000) Parámetros biológico-pesqueros y evaluación de stock de besugo (Epigonus crassicaudus). Instituto de Investigación Pesquera. Informe Final, 110 pp.Google Scholar
Geffen, AJ (1982) Otolith ring deposition in relation to growth rate in herring (Clupea harengus) and turbot (Scophthalmus maximus) larvae. Marine Biology 71, 317326.Google Scholar
Hilborn, R and Walters, CJ (1992) Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty. New York, NY: Chapman and Hall.Google Scholar
Ihaka, R and Gentleman, R (1996) R: a language for data analysis and graphics. Journal of Computational and Graphical Statistics 5, 299314.Google Scholar
Kai, L (2016) Toward a new paradigm for growth modeling in fisheries stock assessments: embracing plasticity and its consequences. Fisheries Research 180, 422.Google Scholar
Kousteni, V and Megalofonou, P (2015) Aging and life history traits of the longnose spiny dogfish in the Mediterranean Sea: new insights into conservation and management needs. Fisheries Research 168, 619.Google Scholar
Leal, E, Contreras, F and Oyarzun, C (2009) Distribución, batimetría y alimentación de Epigonus crassicaudus de Buen, 1959 (Perciformes: Epigonidae) en la costa de Chile. Gayana 73, 95101.Google Scholar
Methot, RD and Wetzel, CR (2013) Stock synthesis: a biological and statistical frame-work for fish stock assessment and fishery management. Fisheries Research 142, 8699.Google Scholar
Ojeda, V and Labrin, C (2011) Crecimiento de besugo Epigonus crassicaudus (Anexo 3). Seguimiento Demersal y Aguas Profundas 2010. Instituto de Fomento Pesquero (IFOP)/SUBPESCA, 184 pp.Google Scholar
Ojeda, V, Wiff, R, Labrín, C and Contreras, F (2010) La longevidad Del besugo Epigonus crassicaudus en Chile: ¿es similar a la de sus parientes? Revista Biologia Marina y Oceanografía 45, 507511.Google Scholar
Okamoto, M and Motomura, H (2011) Epigonus carbonarius, a new species of deepwater cardinalfish (Perciformes: Epigonidae) from the Marquesas Islands, with a redefinition of the Epigonus oligolepis group. Journal of Applied Ichthyology 58, 155160.Google Scholar
Okamoto, M, Motomura, H and Asahida, T (2011) Redescription of a poorly known deepwater cardinalfish, Epigonus affinis (Actinopterygii: Perciformes: Epigonidae), and comparison with related species. Species Diversity 16, 8592.Google Scholar
Panella, G (1980) Growth patterns in fish sagittae. In Rhoades, DC and Lutz, RA (eds), Skeletal Growth of Aquatic Organisms. New York, NY: Plenum Press, pp. 519560.Google Scholar
Parin, N (1987) Oceanic ichthyocene systems and their commercial potential. In Parin, NV and Novikov, NP (eds), Biologicheskie Resursy Otkrytogo Okeana [Biological Resources of the Open Ocean]. Moscow: Nauka, pp. 138163.Google Scholar
Plaza, G, Honda, H, Sakaji, H and Nashida, K (2005) Preparing fish sagittae for examination of daily growth increments of young-of-the-year fishes: a modification of the embed method. Journal of Fish Biology 66, 592597. doi: 10.1111/J.0022-1112.2005.00625.X.Google Scholar
Radtke, RL, Fine, ML and Bell, J (1985) Somatic and otolith growth in the oyster toadfish (Opsanus tau L). Journal of Experimental Marine Biology and Ecology 90, 259275.Google Scholar
SUBPESCA (2016) Establece porcentajes de desembarque de alfonsino y besugo como fauna acompañante de pesquerías demersales que indica. Documento Exento. 199. Santiago, 28 de marzo de 2016.Google Scholar
Summerfelt, R and Hall, G (1987) Age and Growth of Fish. Ames, IA: Iowa State University Press.Google Scholar
Taubert, B and Tranquilli, J (1982) Verification of the formation of annuli in otoliths of largemouth bass. Transactions of the American Fisheries Society 111, 531534.Google Scholar
Thorson, JT and Minte-Vera, CV (2016) Relative magnitude of cohort, age, and year effects on size at age of exploited marine fishes. Fisheries Research 180, 4553.Google Scholar
Tracey, D (1993) Mercury in black cardinalfish (Epigonus telescopus). N.Z. Journal of Marine and Freshwater Research 27, 177181.Google Scholar
Tracey, D, George, K and Gilbert, D (2000) Estimation of age and growth, and mortality parameters of black cardinalfish (Epigonus telescopus) in QMA 2 (East North Island). New Zealand Fisheries Assessment Report 2000/ 27, pp. 121.Google Scholar
Tracey, D, Andrews, A, Horn, P and Neil, H (2017) Another New Zealand centenarian: age validation of black cardinalfish (Epigonus telescopus) using lead-radium and bomb radiocarbon dating. Marine and Freshwater Research 68, 352360. doi: 10.1071/MF15267.Google Scholar
Victor, BC and Brothers, EB (1982) Age and growth of the fallfish Semotilus corporalis with daily otolith increments as a method of annulus verification. Canadian Journal of Zoology 60, 25432550.Google Scholar
Vieira, AR, Figueiredo, I, Figueiredo, C and Menezes, GM (2013) Age and growth of two deep-water fish species in the Azores Archipelago: Mora moro (Risso, 1810) and Epigonus telescopus (Risso, 1810). Deep Sea Research Part II: Topical Studies in Oceanography 98, 148159..Google Scholar
Von Bertalanffy, L (1938) A quantitative theory of organic growth (inquiries on growth laws II). Human Biology Journal 10, 181213.Google Scholar
Waldron, M (1994) Validation of annuli of the South African anchovy, Engraulis capensis, using daily otolith growth increments. ICES Journal of Marine Science 51, 233234. doi: 10.1006/JMSC.1994.1022.Google Scholar
Waldron, M and Armstrong, M (1989) Aspects of the variability in growth of juvenile anchovy Engraulis capensis in the southern Bengela System. South African ICES Journal of Marine Science 8, 919.Google Scholar
Waldron, M and Kerstan, M (2001) Age validation in horse mackerel (Trachurus trachurus) otoliths. ICES Journal of Marine Science 58, 806813. doi: 10.1006/jmsc.2001.1071.Google Scholar
Whitney, RR and Carlander, KD (1956) Interpretation of body-scale regression for computing body length of fish. Journal of Wildlife Management 20, 27.Google Scholar
Wiff, R, Quiroz, JC and Tascheri, R (2005) Estado de explotación del recurso besugo (Epigonus crassicaudus) en Chile. Investigaciones Marinas 33, 5767.Google Scholar
Wright, P, Woodroffe, D, Gibb, F and Gordon, J (2002) Verification of first annulus formation in the illicia and otoliths of white anglerfish, Lophius piscatorius, using otolith microstructure. ICES Journal of Marine Science 59, 587593. doi: 10.1006/JMSC.2002.Google Scholar