Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T20:15:30.437Z Has data issue: false hasContentIssue false

B-cells and digestion in the hepatopancreas of penaeus semisulcatus (Crustacea: Decapoda)

Published online by Cambridge University Press:  11 May 2009

S. Y. Al-Mohanna
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge LL59 5EH
J. A. Nott
Affiliation:
N.E.R.C. Unit of Marine Invertebrate Biology, Marine Science Laboratories, Menai Bridge LL59 5EH

Introduction

The current nomenclature for cells in the hepatopancreas of decapods is based on the classification of Jacobs (1928) and Hirsch & Jacobs (1928). They described the E-(embryonic), F-(fibrillar), B-(blister-like) and R-(resorptive or absorptive) cells. More recently the M-(midget) cell has been described (Al-Mohanna, Nott & Lane, 1984).

Accounts of the structure of these cells are reviewed by Gibson & Barker (1979) and the B-cells most closely resemble those described and illustrated in this paper for the period 24 h after feeding.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Mohanna, S. Y., 1983. The Hepatopancreas of Penaeus semisulcatus De Haan (Crustacea: Decapoda) During the Digestive and Moult Cycles. Ph.D. Thesis, University of Wales.Google Scholar
Al-Mohanna, S. Y., Nott, J. A. & Lane, D. J. W., 1984. M-‘midget’ cells in the hepatopancreas of the shrimp Penaeus semisulcatus De Haan, 1844 (Decapoda, Natantia). Crustaceana, 48, 260268.CrossRefGoogle Scholar
Al-Mohanna, S. Y., Nott, J. A. & Lane, D. J. W., 1985. Mitotic E- and secretory F-cells in the hepatopancreas of the shrimp Peneus semisulcatus (Crustacea: Decapoda). Journal of the Marine Biological Association of the United Kingdom, 65, 901910.CrossRefGoogle Scholar
Arnaud, J., Runet, M. & Mazza, J., 1978. Studies on the midgut of Centropages typicus (Copepod, Calanoid). Cell and Tissue Research, 187, 333353.CrossRefGoogle ScholarPubMed
Arnaud, J., Brunet, M. & Mazza, J., 1984 a. Détection d'une activité arylsulfatasique dans les cellules B de l'intestin moyen de Centropages typicus (Copépode, Calanoide). Compte rendu hebdomadaire des séances le l' Academie des sciences (sér. III), 298, 499502.Google Scholar
Arnaud, J., Brunet, M. & Mazza, J., 1984 b. Cytochemical detection of phosphatase and arylsulphatase activities in the midgut of Centropages typicus (Copepod, Calanoid). Basic and Applied Histochemistry, 28, 399412.Google ScholarPubMed
Bogen, A. & Farley, J., 1974. Phasic activity in the digestive gland cells of the intertidal prosobranch, Littorina saxatilis (Olivi) and relations to the tidal cycle. Proceedings of the Malacological Society of London, 41, 4156.Google Scholar
Burighel, P., 1979. Peroxidase absorption in the ascidian gut. Journal of Experimental Zoology, 207, 131142.Google Scholar
Burighel, P. & Milanesi, C, 1973. Fine structure of the gastric epithelium of the ascidian Botryllus schlosseri. Vacuolated and zymogenic cells. Zeitschrift für Zellforschung und mikroskopische Anatomie, 145, 541555.CrossRefGoogle ScholarPubMed
Burighel, P. & Milanesi, C., 1977. Fine structure of the intestinal epithelium of the colonial ascidian Botryllus schlosseri. Cell and Tissue Research, 182, 357369.CrossRefGoogle ScholarPubMed
Faulk, W. P. & Taylor, G. M., 1971. An immunocolloid method for the electron microscope. Immunochemistry, 8, 10811083.Google Scholar
Gibson, R. & Barker, P. L., 1979. The decapod hepatopancreas. Oceanography and Marine Biology, an Annual Review, 17, 285346.Google Scholar
Hirsch, G. C. & Jacobs, W., 1928. Der Arbeitsrhythmus der Mitteldarmdruse von Astacus leptodactylus. I. Teil: Methodik und Technik. Der Beweis der Periodizitat. Zeitschrift für vergleichende Physiologie, 8, 102144.CrossRefGoogle Scholar
Hopkin, S. P. & Nott, J. A., 1980. Studies on the digestive cycle of the shore crab Carcinus maenas (L.) with special reference to the B cells in the hepatopancreas. Journal of the Marine Biological Association of the United Kingdom, 60, 891907.Google Scholar
Icely, J. D. & Nott, J. A., 1985. Feeding and digestion in Corophium volutator (Crustacea: Amphipoda). Marine Biology, 89, 183195.CrossRefGoogle Scholar
Jacobs, W., 1928. Untersuchungen über die cytologie der sekretbildung in der Mitteldarmdruse von Astacus leptodactylus. Zeitschrift für Zellforschung und mikroskopische Anatomie, 8, 162.Google Scholar
Kraehenbuhl, J. P., Gloor, E. & Blanc, B., 1967. Resorption intestinale de la ferritine chez deux espéces animales aux possibilities d'absorption protéique néonatale différents. Zeitschrift für Zellforschung und mikroskopische Anatomie, 76, 170186.Google Scholar
Mcquiston, R. W., 1969. Cyclic activity in the digestive diverticula of Lasaea rubra (Montagu) (Bivalvia: Eulamellibranchia). Proceedings of the Malacological Society of London, 38, 483493.Google Scholar
Matioli, G. T. & Barker, R. F., 1963. Denaturation of ferritin and its relationship with hemosiderin. Journal of Ultrastructure Research, 8, 477490.CrossRefGoogle ScholarPubMed
Merdsoy, B. & Farley, J., 1973. Phasic activity in the digestive gland cells of the marine prosobranch gastropod Littorina littorea (L.). Proceedings of the Malacological Society of London, 40, 473482.Google Scholar
Nott, J. A., Corner, E. D. S., Mavin, L. J. & O'hara, S. C. M., 1985. Cyclical contributions of the digestive epithelium to faecal pellet formation by the copepod Calanus helgolandicus. Marine Biology, 89, 271279.CrossRefGoogle Scholar
Owen, G., 1970. The fine structure of the digestive tubules of the marine bivalve Cardium edule. Philosophical Transactions of the Royal Society (B), 258 245260.Google Scholar
Owen, G., 1973. The fine structure and histochemistry of the digestive diverticula of the protobranchiate bivalve Nucula sulcata. Proceedings of the Royal Society (B), 183, 249264.Google Scholar
Owen, G., 1974. Feeding and digestion in the Bivalvia. Advances in Comparative Physiology and Biochemisty, 5, 135.CrossRefGoogle ScholarPubMed
Pal, S. G., 1970. Cytochemical localization of two lysosomal enzymes in phagosomes in Mya arenaria (Bivalvia). Proceedings of the Royal Microscopical Society, 5, 76.Google Scholar
Silverstein, S. C., Steinman, R. M. & Cohn, Z. A., 1977. Endocytosis. Annual Review of Biochemistry, 46, 669722.Google Scholar
Sumner, A. T., 1965. The cytology and histochemistry of the digestive gland cells of Helix. Quarterly Journal of Microscopical Science, 106, 173192.Google ScholarPubMed
Sumner, A. T, 1969. The distribution of some hydrolytic enzymes in the cells of the digestive gland of certain lamellibranchs and gastropods. Journal of Zoology, 158, 277291.Google Scholar
Walker, G., 1972. The digestive system of the slug Agriolimax reticulatus (Müller): experiments on phagocytosis and nutrient absorption. Proceedings of the Malacological Society of London, 40, 3343.Google Scholar