Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-16T03:13:03.319Z Has data issue: false hasContentIssue false

Ecological and non-environmental constitutional resistance of the protoplasm of marine algae

Published online by Cambridge University Press:  11 May 2009

Richard Biebl
Affiliation:
Institute for Plant Physiology of the University of Vienna and the Plymouth Laboratory

Extract

Marine algae supply good examples of the difference between ‘ecological’ and ‘non-environmental constitutional’ resistance of the protoplasm of their cells to variations in the environment. The resistance to ecological factors such as diluted or concentrated sea water, to desiccation, or to light exposure is very similar among algae occupying the same habitat. On the basis of the degree of resistance shown, three ecological groups can be distinguished: (1) algae from the intertidal zone; (2) algae from the low-water level and tide-pools; and (3) sublittoral algae.

On the other hand, there is no similarity in the resistance to chemical substances (H3BO3, ZnSO4, MnSO4, VOSO4) of algae within a given ecological group. It is characteristic for a given species.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1952

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atkins, W. R. G., 1922 a. The hydrogen ion concentration ofthe cells of some marine algae. Journ. Mar. Biol. Assoc., Vol. 12, pp. 875–8.Google Scholar
Atkins, W. R. G., 1922 b. The influence upon algal cells of an alteration in the hydrogen ion concentration of sea water. Journ. Mar. Biol. Assoc., Vol. 12, pp. 789–91.CrossRefGoogle Scholar
Baker, S. M., 1909. On the causes of the zoning of brown seaweeds on the seashore. New Phytologist, Vol. 8, pp. 196202.CrossRefGoogle Scholar
Biebl, R., 1937. Oekologische und zellphysiologische Studien an Rotalgen der englischen Südküste. Beth. z. Bot. Zentralbl., Bd. 57, Abt. A, pp. 381424.Google Scholar
Biebl, R., 1938. Trockenresistenz und osmotische Empfindlichkeit der Meeresalgen verschieden tiefer Standorte. Jahrb. f. wiss. Bot., Bd. 86, p. 350.Google Scholar
Biebl, R., 1939 a. Ueber die Temperaturresistenz von Meeresalgen verschiedener Klimazonen und verschieden tiefer Standorte. Jahrb. f. wiss. Bot., Bd. 88, pp. 389420.Google Scholar
Biebl, R., 1939b. Protoplasmatische Oekologie der Meeresalgen. Ber. d. Deutsch. Bot. Ges., Bd. 57, pp. (78)–(90).Google Scholar
Biebl, R., 1947. Die Rcsistenz gegen Zink, Bor und Mangan als Mittel zur Kennzeichnung verschiedener pflanzlicher Plasmasorten. Sitz. Ber. d. Akad. d. Wiss. Wien, Math. nat. Kl., Abt. I, Bd. 155, pp. 145157.Google Scholar
Biebl, R., 1949. Vergleichende chemische Resistenzstudien an pflanzlichen Plasmen. Protoplasma, Bd. 39, pp. 113.CrossRefGoogle Scholar
Biebl, R., 1950. Ueber die Resistenz pflanzlicher Plasmen gegen Vanadium. Protoplasma, Bd. 39, pp. 251–9.CrossRefGoogle Scholar
Fritsch, F. E., 1945. The Structure and Reproduction of the Algae. Vol. II. 939 pp. Cambridge.Google Scholar
Gail, F. W., 1918. Some experiments with Fucus to determine the factors controlling its vertical distribution. Publ. Puget Sound Biol. Sta., Vol. 2, pp. 139–51.Google Scholar
Höfler, K., 1930. Das Plasmolyse Verhalten der Rotalgen. Zeitschr. f. Bot., Bd. 23, pp. 570–88.Google Scholar
Höfler, K., 1931. Hypotonietod und osmotische Resistenz einiger Rotalgen. Oest. Bot. Zeitschr., Bd. 80, pp. 5171.CrossRefGoogle Scholar
Höfler, K., 1932. Vergleichende Protoplasmatik. Ber. d. Deutsch. Bot. Ges., Bd. 50, pp. (53)(67)Google Scholar
Höfler, K., 1937 Spezifische Permeabilitätsreihen verschiedener Zellsorten derselben Pflanze. Ber. d. Deutsch. Bot. Ges., Bd. 55, pp. (133)(148).Google Scholar
Hofmeister, L., 1938. Verschiedene Permeabilitätsreihen bei einer und derselben Zellsorte von Ranunculus repens. Jahrb. f. wiss. Bot., Bd. 86, pp. 401–19.Google Scholar
Johnson, D. S. & Skutch, A. F. 1928. Littoral vegetation on a headland of Mt. Desert Island, Maine. I and II. Ecology, Vol. 9, pp. 188215; 307–38.CrossRefGoogle Scholar
Kylin, H., 1917. Ueber die Kälteresistenz der Meeresalgen. Ber. d. Deutsch. Bot. Ges., Bd. 35, pp. 370–84.Google Scholar
Kylin, H., 1927. Ueber den Einfluss der Wasserstoffionenkonzentration auf einige Meeresalgen. Botaniska Notiser, Lund, p. 243.Google Scholar
Montfort, C., 1936. Umwelt, Erbgut und physiologische Gestalt. I. Lichttod und Starklichtresistenz usw. Jahrb. f. zviss. Bot., Bd. 84, pp. 157.Google Scholar
Montfort, C., 1937 Die Trockenresistenz der Gezeitenpflanzen und die Frage der Ueber-einstimmung von Standort und Vegetation. Ber. d. Deutsch. Bot. Ges., Bd. 55, pp. (85)(95)Google Scholar
Montfort, C. & Hahn, H., 1950. Atmung und Assimilation als dynamische Kennzeichen abgestufter Trockenresistenz bei Farnen und höheren Pflanzen. Planta, Bd. 38, pp. 503–15.CrossRefGoogle Scholar
Stocker, O. & Holdheide, W., 1937. Die Assimilation Helgoländer Gezeitenalgen wahrend der Ebbezeit. Zeitschr. f. Bot., Bd. 32, pp. 159.Google Scholar
Weber, F. 1929. Protoplasmatische Pflanzenanatomie. Protoplasma, Bd. 8, pp. 291306.CrossRefGoogle Scholar