Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T10:16:49.711Z Has data issue: false hasContentIssue false

A morphometric analysis of the genus Terschellingia (Nematoda: Linhomoeidae) with redefinition of the genus and key to the species

Published online by Cambridge University Press:  05 June 2009

M. Armenteros
Affiliation:
Centro de Investigaciones Marinas, Universidad de La Habana, 16 # 114, CP 11300, Playa, Ciudad Habana, Cuba Marine Biology Section, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium
A. Ruiz-Abierno
Affiliation:
Centro de Investigaciones Marinas, Universidad de La Habana, 16 # 114, CP 11300, Playa, Ciudad Habana, Cuba
M. Vincx
Affiliation:
Marine Biology Section, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium
W. Decraemer*
Affiliation:
Department of Invertebrates, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, 1000 Brussels, Belgium Nematology Section, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium
*
Correspondence should be addressed to: W. Decraemer, Nematology Section, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium email: wilfrida.decraemer@ugent.be

Abstract

The cosmopolitan and often ecologically dominant genus Terschellingia (Nematoda: Linhomoeidae), with 38 nominal species, is taxonomically a problematic taxon. Its species show high morphological plasticity, possess few diagnostic characters and identification keys are lacking. A revision of the genus was carried out based on morphological and morphometric data from the literature and from observations of specimens collected in Cienfuegos Bay, Caribbean Sea, Cuba. The diagnosis of the genus Terschellingia is emended. Of the current 38 nominal species, 15 are considered as valid species based on morphological characters related to size and position of amphidial fovea, presence/position of cephalic and cervical setae, presence/size/shape of pharyngeal bulb, shape of spicular apparatus and shape of tail. Tabular and pictorial keys were provided based on these characters. Three sympatric species: T. communis, T. gourbaultae and T. longicaudata were redescribed based on recently collected Cuban specimens. Each of them showed relatively large differences in body size in comparison with the respective type specimens, suggesting possible variation due to local environmental differences. The highest intraspecific variation pertains for the most widely spread cosmopolitan species T. longicaudata, suggesting that morphological plasticity enhanced adaptation to different environmental conditions. The notable taxonomic inflation within the genus (14 species inquirendae, 9 junior synonyms), probably also present in other highly specious genera of marine nematodes, can lead to an overestimation of the alpha-diversity.

Type
Review
Copyright
Copyright © Marine Biological Association of the United Kingdom 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allgén, C.A. (1933) Freilebende nematoden aus dem Tronhjemsfjord. Capita Zoologica 4, 1162.Google Scholar
Allgén, C.A. (1959) Free-living marine nematodes. In Odhner, N.Hj. (ed.) Further zoological results of the Swedish Antarctic expedition 1901–1903. Stockholm: Kungl. Boktryckeriet P.A. Norstedt & Söner, pp. 1295.Google Scholar
Alroy, J. (2002) How many named species are valid? Proceedings of the National Academy of Sciences of the United States of America 99, 37063711.CrossRefGoogle ScholarPubMed
Austen, M.C. (1989) New species of Terschellingia (Nematoda: Linhomoeidae) from the Tamar Estuary, England and the Maldive Islands. Journal of the Marine Biological Association of the United Kingdom 69, 9399.CrossRefGoogle Scholar
Bhadury, P., Austen, M.C., Bilton, D.T., Lambshead, P.J.D., Rogers, A.D. and Smerdon, G.R. (2008) Evaluation of combined morphological and molecular techniques for marine nematode (Terschellingia spp.) identification. Marine Biology 154, 509518.CrossRefGoogle Scholar
Chitwood, B.G. (1951) North American marine nematodes. Texas Journal of Sciences 3, 617672.Google Scholar
Cobb, N.A. (1888) Australian free-living marine nematodes. Proceedings of the Linnean Society of New South Wales 23, 33407.Google Scholar
Cobb, N.A. (1914) Antarctic marine free-living nematodes of the Shackleton expedition. Contributions to a Science of Nematology 1, 133.Google Scholar
De Ley, P. (2000) Lost in worm space: phylogeny and morphology as road maps to nematode diversity. Nematology 2, 916.CrossRefGoogle Scholar
De Man, J.G. (1888) Sur quelques nématodes libres de la Mer du Nord, nouveaux ou peu connus. Mémoires de la Société Zoologique de France 1, 151.Google Scholar
De Man, J.G. (1906) Sur quelques espèces nouvelles ou peu connues de nématodes libres vivant sur les côtes de la 25 ocieta. Mémoires de la Société Zoologique de France 20, 3390.Google Scholar
Deprez, T., Vanden Berghe, E. and Vincx, M. (2004) NeMys: a multidisciplinary biological information system. In Vanden Berghe, (ed.) Proceedings: ‘The Colour of Ocean Data’: International symposium on oceanographic data and information management with special attention to biological data, Brussels, Belgium, 25–27 November 2002. IOC Workshop Report, pp. 5763.Google Scholar
Derycke, S., Remerie, T., Vierstraete, A., Backeljau, T., Vanfleteren, J., Vincx, M. and Moens, T. (2005) Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina. Marine Ecology Progress Series 300, 91103.CrossRefGoogle Scholar
Dos Santos, G.A.P., Derycke, S., Fonsêca-Genevois, V.G., Coelho, L.C.B.B., Correia, M.T.S. and Moens, T. (2008) Differential effects of food availability on population growth and fitness of three species of estuarine, bacterial-feeding nematodes. Journal of Experimental Marine Biology and Ecology 355, 2740.CrossRefGoogle Scholar
Filipjev, I.N. (1918) Free-living marine nematodes of the Sevastopol area. Transactions of the Zoological Laboratory and the Sevastopol Biological Station of the Russian Academy of Sciences Series II, 4.Google Scholar
Filipjev, I.N. (1922) Sur les Nématodes libres de la mer d'Azov. Trudy Stavropol'skogo Sel'skohozyaystvennogo Instituta 1, 185208.Google Scholar
Fortuner, R. (1990) Ratios and indexes in nematode taxonomy. Nematologica 36, 205216.CrossRefGoogle Scholar
Gagarin, V.G. and Vu-Thanh, N. (2003) Three new species of free-living nematodes from Vietnamese water bodies. Zoologicheskii Zhurnal 82, 13931401.Google Scholar
Gerlach, S.A. (1955) Zur kenntnis der freilebenden marinen nematoden von San Salvador. Zeitschrift für Wissenschaftliche Zoologie 158, 249303.Google Scholar
Gerlach, S.A. (1956) Brasilianische meeres-nematoden 1. Boletim do Instituto Oceanográfico São Paulo 5, 369.CrossRefGoogle Scholar
Gerlach, S.A. (1963) Über freilebende meeresnematoden revision der Linhomoheidae. Zoologische Jahrbücher Systematik Band 90, 599658.Google Scholar
Gerlach, S.A. and Riemann, F. (1973) The Bremerhaven checklist of aquatic nematodes. A catalogue of Nematoda Adenophorea excluding the Dorylaimida. Bremen: Kommissionsverlag Franz Leuwer.Google Scholar
Guo, Y. and Zhang, Z. (2000) A new species of Terschellingia (Nematoda) from the Bohai Sea, China. Journal of Ocean University of Qingdao 30, 487492.Google Scholar
Heip, C., Vincx, M. and Vranken, G. (1985) The ecology of marine nematodes. Oceanography and Marine Biology: an Annual Review 23, 399489.Google Scholar
Hollander, J. (2008) Testing the grain-size model for the evolution of phenotypic plasticity. Evolution, doi: 10.1111/j.1558-5646.2008.00365.x.CrossRefGoogle ScholarPubMed
Huang, Y. and Zhang, Z. (2005) Two new species and one new record of free-living marine nematodes from the Yellow Sea, China. Cahiers de Biologie Marine 46, 365378.Google Scholar
Inglis, W.G. (1968) Interstitial nematodes from St. Vincent's Bay, New Caledonia. Expédition française sur les recifs coralliens de la Nouvelle Calédonie, Paris 1967, Editions de la Fondation Singer-Polignac, Occasional Publications, No. 2, 45 pp.Google Scholar
Juario, J. (1974) Neue freilebende Nematoden aus dem Sublitoral der Deutschen Bucht. Veröffentlichungen Des Instituts für Meeresforschung in Bremerhaven 14, 275303.Google Scholar
Lorenzen, S. (1994) The phylogenetic systematics of freeliving nematodes. Andover: The Ray Society.Google Scholar
Murphy, D.G. (1965) Chilean marine nematodes. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven 9, 173203.Google Scholar
Nadler, S.A. (2002) Species delimitation and nematode biodiversity: phylogenies rule. Nematology 4, 615625.CrossRefGoogle Scholar
Ott, J.A. (1972) Twelve new species of nematodes from an intertidal sandflat in North Carolina. Internationale Revue der Gesamten Hydrobiologie und Hydrographie 57, 463496.CrossRefGoogle Scholar
Pastor de Ward, C. (1989) Free-living marine nematodes of the Deseado River Estuary (Siphonolaimoidea, Siphonolaimidae, Linhomoeidae) Santa Cruz, Argentina. 6. Studies on Neotropical Fauna and Environment 24, 231247.CrossRefGoogle Scholar
Platonova, T.A. (1971) Free-living marine nematodes from the Possjet Bay of the Sea of Japan. Isledovanija Fauni Morjei 8, 72108.Google Scholar
Schneider, G. (1926) Zweiter Beitrag zur Kenntnis der Brackwasser-Nematoden Finlands. Acta Ocietatis pro fauna et flora Fennica 56, 147.Google Scholar
Schneider, W. (1939) Eine neue Terschellingia-Art aus den Thermen von Split. Godišnjak Oceanografskog Instituta Kraljevine Jugoslavije 2, 101103.Google Scholar
Schulz, E. (1932) Beiträge zur Kenntnis mariner Nematoden aus der Kieler Butch. Zoologische Jahrbücher Systematik Band 62, 331340.Google Scholar
Schuurmans-Steckhoven, J.H. (1950) The freeliving marine nemas of the Mediterranean. I. The Bay of Villefranche. Mémoires de Institut Royal des Sciences Naturelles de Belgique 10, 1220.Google Scholar
Tchesunov, A.V. (1978) Free-living nematodes of the family Linhomoeidae from the Caspian Sea. Zoologicheskii Zhurnal 57, 16231631.Google Scholar
Timm, R.W. (1961) The marine nematodes of the Bay of Bengal. Proceedings of the Pakistan Academy of Science 1, 2588.Google Scholar
Timm, R.W. (1962) Marine nematodes of the family Linhomoeidae from the Arabian Sea at Karachi. Canadian Journal of Zoology 40, 165178.CrossRefGoogle Scholar
Vitiello, P. (1969) Linhomoeidae (Nematoda) des vases profondes du Golfe du Lion. Thetys 1, 493527.Google Scholar
Warwick, R.M., Platt, H.M. and Somerfield, P.J. (1998) Free-living marine nematodes. Part III. Monhysterids. Shrewsbury: Field Studies Council.Google Scholar
Wieser, W. (1956) Free living marine nematodes. III. Axonolaimoidea and Monhysteroidea. Reports of the Lund University Expedition 1948–49. Lunds Universitets Arsskrift, No. 52, 115 pp.Google Scholar
Wieser, W. and Hopper, B. (1967) Marine nematodes of the east coast of North America. I. Florida. Bulletin of the Museum of Comparative Zoology (Harvard University) 135, 239344.Google Scholar
Yushin, V.V. (2008) Sperm dimorphism in the free-living marine nematode Terschellingia glabricutis (Nematoda: Monhysterida: Linhomoeidae). Nematology 10, 189205.CrossRefGoogle Scholar