Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T07:33:44.441Z Has data issue: false hasContentIssue false

Nervous Control of Gut Movements in Lophius

Published online by Cambridge University Press:  11 May 2009

J. Z. Young
Affiliation:
The Wellcome Institute for the History of Medicine, 183, Euston Road, London and The Laboratory, Marine Biological Association, Citadel Hill, Plymouth *Reprint requests should be sent to the Wellcome Institute.

Extract

There are not sufficient data available to allow any general statements about the earlier stages of evolution of the autonomic nervous system and of its various transmitter mechanisms. In the previous paper (Young, 1980) it was shown that control of the stomach of elasmobranchs is largely by the inhibitory action of the sympathetic nerves, probably mediated by 5-HT. In teleostean fishes on the other hand control seems to be mainly by the cholinergic excitatory action of the vagus, especially in the more advanced (acanthopterygian) groups (Grove & Campbell, 1979a, b; Fänge & Grove, 1979).

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baumgarten, H. G., 1965. Über die Muskulatur und die Nerven in der Darmwand der Schleie (Tinea vulgaris Cuv.). Zeitschrift für Zellforschung und mikroskopische Anatomie, 76, 248259.CrossRefGoogle Scholar
Burnstock, G., 1958. The effect of drugs on spontaneous motility and on response to stimulation of the extrinsic nerves of the gut of a teleostean fish. British Journal of Pharmacology and Chemotherapy, 13, 216226.CrossRefGoogle ScholarPubMed
Burnstock, G., 1969. Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacological Reviews, 21, 247324.Google ScholarPubMed
Burnstock, G., 1975. Purinergic transmission. In Handbook of Psycho-pharmacology (ed. Iversen, et al. ). New York: Plenum Press.Google Scholar
Burnstock, G., Campbell, G., Satchell, D. & Smythe, A., 1970. Evidence that adenosine triphosphate or a related nucleotide is the transmitter substance released by non-adrenergic inhibitory nerves in the gut. British Journal of Pharmacology and Chemotherapy, 40, 668688.CrossRefGoogle ScholarPubMed
Campbell, G., 1975. Inhibitory vagal innervation of the stomach in fish. Comparative Biochemistry and Physiology, 50C, 169170.Google Scholar
Campbell, G. & Burnstock, G., 1968. Comparative physiology of gastrointestinal motility. In Handbook of Physiology, section 6, Alimentary Canal, vol. IV. Motility (ed. Code, C. F.) Washington, D.C.: American Physiological Society.Google Scholar
Edwards, D. J., 1972 a. Electrical stimulation of the isolated vagus nerve-muscle preparations of the stomach of the plaice (Pleuronectes platessa L.). Comparative and General Pharmacology, 3, 235242.CrossRefGoogle ScholarPubMed
Edwards, D. J., 1972 b. Reactions of the isolated plaice stomach to applied drugs. Comparative and General Pharmacology, 3, 345358.CrossRefGoogle ScholarPubMed
Euler, U. S. V. & ÖStlund, E., 1957. Effects of certain biologically occurring substances on the isolated intestine of fish. Acta physiologica scandinavica, 38, 364372.CrossRefGoogle Scholar
Fänge, R. & Grove, D., 1979. Digestion. In Fish Physiology, vol. 8 (ed. Hoar, W. S., Randall, D. J. and Brett, J. R.), pp. 161260. Academic Press.Google Scholar
Gaddum, J. H. & Szerb, J. C., 1961. Assay of substance P on goldfish intestine in a microbath. British Journal of Pharmacology and Chemotherapy, 17, 451463.CrossRefGoogle Scholar
Grove, D. J. & Campbell, G., 1979 a. The role of extrinsic and intrinsic nerves in the co-ordination of gut motility in the stomachless flatfish Rhombosolea tapirina and Ammotretis rostrata Guenther. Comparative Biochemistry and Physiology, 63C, 143159.Google Scholar
Grove, D. J. & Campbell, G. 1979 b. Effects of extrinsic nerve stimulation on the stomach of the flathead, Platyctphalus bassensis Cuvier and Valenciennes. Comparative Biochemistry and Physiology, 63C, 373380.Google Scholar
Müller, E. & Liljestrand, G., 1918. Anatomische u. experimentelle Untersuchungen über das autonomische Nervensystem der Elasmobranchien nebst Bemerkungen ü die Darmnerven bei den Amphibien u. Saugetieren. Archiv für Anatomie und Physiologie (Abeteilung Anatomie), 1918, 137172.Google Scholar
Nilsson, S. & Fänge, R., 1969. Adrenergic and cholinergic vagal effects on the stomach of a teleost (Gadus morhua). Comparative Biochemistry and Physiology, 30, 691—694.CrossRefGoogle ScholarPubMed
Read, J. B. & Burnstock, G., 1969. Adrenergic innervation of the gut musculature in vertebrates. Histochemie, 17, 263272.CrossRefGoogle ScholarPubMed
Satchell, D., Burnstock, G. & Dann, P., 1973. Antagonism of the effects of purinergic nerve stimulation and exogenously applied ATP on the guinea-pig taenia coli by 2-substituted imidazolines and related compounds. European Journal of Pharmacology, 32, 264269.CrossRefGoogle Scholar
Stevenson, S. V. & Grove, D. J., 1977. The extrinsic innervation of the stomach of the plaice, Pleuronectes platessa L. I. The vagal nerve supply. Comparative Biochemistry and Physiology, 58C, 143151.Google Scholar
Stevenson, S. V. & Grove, D. J., 1978. The extrinsic innervation of the stomach of the plaice, Pleuronectes platessa L. II. The splanchnic nerve supply. Comparative Biochemistry and Physiology. 60C, 4550.Google Scholar
Watson, A. H. D., 1979. Fluorescent histochemistry of the teleost gut: evidence for the presence of serotonergic neuiones. Cell and Tissue Research, 197, 155164.CrossRefGoogle Scholar
Young, J. Z., 1936. The innervation and reaction to drugs of the visceia of teleostean fish. Proceedings of the Royal Society (B), 120, 303318.Google Scholar
Young, J. Z., 1980. Nervous control of stomach movements in dogfishes and rays. Journal of the Marine Biological Association of the United Kingdom, 60, 117.CrossRefGoogle Scholar