Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T05:01:25.924Z Has data issue: false hasContentIssue false

Newly discovered parasitic Turbellaria of opisthobranch gastropods

Published online by Cambridge University Press:  15 December 2010

Kosuke Sudo*
Affiliation:
Graduate School of Science and Technology, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
Yoshiaki J. Hirano
Affiliation:
Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan Marine Biosystems Research Center, Chiba University, Uchiura 1, Kamogawa, 299-5502, Japan
Yayoi M. Hirano
Affiliation:
Graduate School of Science, Chiba University, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan Marine Biosystems Research Center, Chiba University, Uchiura 1, Kamogawa, 299-5502, Japan
*
Correspondence should be addressed to: K. Sudo, Graduate School of Science and Technology, Chiba University, Yayoi-cho, Inage-ku Chiba, 263-8522, Japan email: kousuke@graduate.chiba-u.jp

Abstract

An endoparasitic platyhelminth from six species of sacoglossan opisthobranchs was collected at several localities of temperate to subtropical waters in Japan. Poecilostomatoid copepods (all species of Splanchnotrophidae and several species of Philoblennidae) and a few digenean flukes had been the only endoparasitic metazoans known for opisthobranch hosts. The newly discovered parasite was 1 to 15 mm in length and had no eyes, mouth, pharynx, or intestine. It had no external organs for parasitic life (e.g. attachment organs) and inhabited the haemocoel of the host. When mature, it emerged from the host and secreted a silky substance around itself to form a cocoon. The cocoon contained egg capsules with 19–42 eggs. Larvae, hatched from the capsule, had a ciliated body and a pair of eye spots. They were negatively phototactic and capable of invading suitable hosts. These morphological and life history features suggest this parasitic worm may belong to the family Fecampiidae (Platyhelminthes: Turbellaria), one of a few obligate parasite taxa in Turbellaria. Molluscan hosts which are common for parasitic Platyhelminthes have not previously been known for this family. The newly discovered parasite may be important for understanding the evolution of parasitism in Platyhelminthes.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arango, C.F. and Brodie, G.D. (2003) Observations of predation on the tropical nudibranch Okenia sp. by the sea spider Anoplodactylus longiceps Williams (Arthropoda: Pycnogonida). Veliger 46, 99101.Google Scholar
Avila, C. (1995) Natural products of opisthobranch molluscs: a biological review. Oceanography and Marine Biology: an Annual Review 33, 487559.Google Scholar
Baba, K. (1986) Anatomical information on Placida sp. Hermala dendritica of Baba, 1937 and 1955, from Japan. Shells and Sea Life 18, 2122.Google Scholar
Baguña, J., Carranza, S., Paps, J., Ruiz-Trillo, I. and Riutort, M. (2001) Molecular taxonomy and phylogeny of the Tricladida. In Littlewood, D.T.J. and Bray, R.A. (eds) Interrelationships of the Platyhelminthes. London: Taylor and Francis, pp. 4956.Google Scholar
Baguña, J. and Riutort, M. (2004) Molecular phylogeny of the Platyhelminthes. Canadian Journal of Zoology 82, 168193.CrossRefGoogle Scholar
Baverstock, P.R., Fielke, R., Johnson, A.M., Bray, R.A. and Beveridge, I. (1991) Conflicting phylogenetic hypotheses for the parasitic Platyhelminthes tested by partial sequencing of 18S ribosomal RNA. International Journal for Parasitology 21, 329339.CrossRefGoogle ScholarPubMed
Baylis, H.A. (1949) Fecampia spiralis, a cocoon-forming parasite of the Antarctic isopod Serolis schythei. Proceedings of the Linnean Society of London 161, 6471.Google Scholar
Bellon-Humbert, C. (1983) Fecampia erythrocephala Giard (Turbellaria Neorhabdocoela), a parasite of the prawn Palaemon serratus Pennant: the adult phase. Aquaculture 31, 117140.Google Scholar
Blair, D. (1993) The phylogenetic position of the Aspidobothrea within the parasitic flatworms inferred from ribosomal RNA sequence data. International Journal for Parasitology 23, 169178.CrossRefGoogle ScholarPubMed
Blair, D. and Williams, J.B. (1987) A new fecampiid of the genus Kronborgia (Platyhelminthes: Turbellaria: Neorhabdocoela) parasitic in the intertidal isopod Exosphaeroma obtusum (Dana) from New Zealand. Journal of Natural History 21, 11551172.CrossRefGoogle Scholar
Bush, A.O., Fernández, J.C., Esch, G.W. and Seed, J.R. (2001) Parasitism, the diversity and ecology of animal parasites. Cambridge: Cambridge University Press, 566 pp.Google Scholar
Cannon, L. (2005) ‘Turbellaria’ (turbellarians). In Rohde, K. (ed.) Marine parasitology. Sydney: CSIRO, pp. 4755.Google Scholar
Carefoot, T.H. (1987) Aplysia: its biology and ecology. Oceanography and Marine Biology: an Annual Review 25, 167284.Google Scholar
Caullery, M. and Mesnil, F. (1903) Recherches sur les ‘Fecampia’ Giard, Turbellariés, Rhabdocèles, parasites internes des crustacés. Annales Faculté des Sciences de Marseille 13, 131168.Google Scholar
Christensen, A.M. (1976) On the morphology and biology of Kronborgia spiralis (Baylis, 1949) (Turbellaria, Neorhabdocoela), with a note on its systematic position. Ophelia 15, 7797.Google Scholar
Christensen, A.M. (1981) Fecampia abyssicola n. sp. (Turbellaria: Rhabdocoela) and five cocoon types of undescribed species of Fecampiidae from the deep sea. Galathea Report 15, 6985.Google Scholar
Christensen, A.M. and Kanneworff, B. (1964) Kronborgia amphipodicola gen. et sp. nov., a dioecious turbellarian parasitizing ampeliscid amphipods. Ophelia 1, 147166.Google Scholar
Christensen, A.M. and Kanneworff, B. (1965) Life history and biology of Kronborgia amphipodicola Christensen and Kanneworff (Turbellaria, Neorhabdcoela). Ophelia 2, 237252.CrossRefGoogle Scholar
Christensen, A.M. and Hurley, A.C. (1977) Fecampia balanicola sp. nov. (Turbellaria Rhabdocoela), a parasite of California barnacles. Acta Zoologica Fennica 154, 119128.Google Scholar
Cribb, T.H., Bray, R.A. and Littlewood, D.T.J. (2001) The nature and evolution of the association among digeneans, molluscs and fish. International Journal of Parasitology 31, 9971011.CrossRefGoogle Scholar
Giard, A. (1886) Sur un Rhabdocoele nouveau, parasite et nidulant (Fecampia erythrocephala). Comptes Rendus des l'Académie des Sciences 103, 499501.Google Scholar
Gonzàlez, C.C., Alvarez, R.M.R., Dominguez, H.R., Bua, M.S., Iglesias, R., Fernandez, C.A. and Estevez, J.M.G. (2005) In vitro reproduction of the turbellarian Urastoma cyprinae isolated from Mytilus galloprovincialis. Marine Biology 147, 755760.CrossRefGoogle Scholar
Hanna, R.E.B. and Halton, D.W. (2001) Parasites of marine molluscs (Littorina). In David, W.H., Jewzey, M.B. and Ian, M. (eds) Practical exercises in parasitology. Cambridge: Cambridge University Press, pp. 1930.Google Scholar
Huys, R. (2001) Splanchnotrophid systematics: a case of polyphyly and taxonomic myopia. Journal of Crustacean Biology 21, 106156.Google Scholar
Jägersten, G. (1940) Zur Kenntnis von Glanduloderma myzostomatis n. gen., n. sp., einer eigentümlichen, in Myzostomiden schmarotzenden Turbellarienform. Arkiv för Zoologi 33A, 124.Google Scholar
Jennings, J.B. (1971) Parasitism and commensalisms in the Turbellaria. Advances in Parasitology 9, 132.CrossRefGoogle Scholar
Jensen, K.R. (1990) Splanchnotrophus elysiae n. sp. (Copepoda; Splanchnotrophidae) found parasitizing in the sacoglossans opisthobranch Elysia australis (Quoy and Gaimard, 1832). Proceedings of the Third International Marine Biological Workshop: the Marine Flora and Fauna of Albany, Western Australia. Weastern Australia Museum, Perth 1, pp. 291296.Google Scholar
Jensen, K.R. (1992) Anatomy of some Indo-Pacific Elysiidae (Opisthobranchia: Sacoglossa (=Ascoglossa)), with a discussion of the generic division and phylogeny. Journal of Molluscan Studies 58, 257296.Google Scholar
Joffe, B.I. and Kornakova, E.E. (2001) Flatworm phylogeneticist: between molecular hammer and morphological anvil. In Littlewood, D.T.J. and Bray, R.A. (eds) Interrelationships of the Platyhelminthes. London: Taylor and Francis, pp. 279291.Google Scholar
Kanneworff, B. and Christensen, A.M. (1966) Kronborgia caridicola sp. nov., an endoparasitic turbellarian from North Atlantic shrimps. Ophelia 3, 6580.Google Scholar
Køie, M. (1990) On the morphology and life-history of Hemiurus luehei Odhner, 1905 (Digenea: Hemiuridae). Journal of Helminthology 64, 193202.Google Scholar
Køie, M. (1992) Life cycle and structure of the fish digeneans Brachyphallus crenatus (Hemiuridae). Journal of Parasitology 78, 338343.CrossRefGoogle ScholarPubMed
Leigh, W.H. (1955) The morphology of Gigantobilharzia huttoni (Leigh, 1953) an avian schistosome with marine dermatitis producing larvae. Journal of Parasitology 41, 262269.Google Scholar
Littlewood, D.T.J. (2006) The evolution of parasitism in flatworm. In Maule, A.G. and Marks, N.J. (eds) Parasitic flatworms ‘molecular biology, biochemistry, immunology and physiology.’ Wallingford: CABI Publishing, pp. 136.Google Scholar
Littlewood, D.T.J. and Olson, P.D. (2001) Small subunit rDNA and the Platyhelminthes: signal, noise, conflict and compromise. In Littlewood, D.T.J. and Bray, R.A. (eds) Interrelationships of the Platyhelminthes. London: Taylor and Francis, pp. 262278.Google Scholar
Littlewood, D.T.J., Rohde, K. and Clough, K.A. (1999a) The interrelationships of all major groups of Platyhelminthes: phylogenetic evidence from morphology and molecules. Biological Journal of the Linnean Society 66, 75114.Google Scholar
Littlewood, D.T.J., Rohde, K., Bray, R.A. and Herniou, E.A. (1999b) Phylogeny of the Platyhelminthes and the evolution of parasitism. Biological Journal of the Linnean Society 68, 257287.Google Scholar
Littlewood, D.T.J., Cribb, T.H., Olson, P.D. and Bray, R.A. (2001) Platyhelminth phylogenetics—a key to understanding parasitism? Belgian Journal of Zoology 131 (Supplement 1), 3546.Google Scholar
Litvaitis, M.K. and Rohde, K. (1999) A molecular test of platyhelminth phylogeny: inferences from partial 28S rDNA sequence. Invertebrate Biology 118, 4256.Google Scholar
Lockyer, A.E., Olson, P.D. and Littlewood, D.T.J. (2003) Utility of complete large and small subunit rRNA genes in resolving the phylogeny of the Neodermata (Platyhelminthes): implications and a review of the cercomer theory. Biological Journal of the Linnean Society 78, 155171.Google Scholar
Rogers, C.N., de Nys, R.And Steinberg, P.D. (2000) Predation on juvenile Aplysia parvula and other small anaspidean, sacoglossan and nudibranch gastropods by pycnogonids. Veliger 43, 330337.Google Scholar
Rohde, K. (1994) The origins of parasitism in the Platyhelminthes. International Journal for Parasitology 24, 10991115.CrossRefGoogle ScholarPubMed
Rohde, K., Hefford, C., Ellis, J.T., Baverstock, P.R., Johnson, A.M., Watson, N.A. and Dittmann, S. (1993) Contributions to the phylogeny of Platyhelminthes based on partial sequencing of 18S ribosomal DNA. International Journal for Parasitology 23, 705724.CrossRefGoogle Scholar
Schrödl, M. (2002) Heavy infestation by endoparasitic copepod crustaceans (Poecilostomatoida: Splanchnotrophidae) in Chilean opisthobranch gastropods, with aspects of splanchnotrophid evolution. Organisms Diversity and Evolution 2, 1926.CrossRefGoogle Scholar
Shinn, G.L. and Christensen, A.M. (1985) Kronborgia pugettensis sp. nov. (Neorhabdocoela: Fecampiidae), an endoparasitic turbellarian infesting the shrimp Heptacarpus kincaidi (Rathbun), with notes on its life-history. Parasitology 91, 431447.Google Scholar
Sudo, K. (2004) Studies on parasites of opisthobranchiate molluscs. MSc thesis. Chiba University, Chiba, Japan. [In Japanese.]Google Scholar
Trowbridge, C.D. (1994) Defensive responses and palatability of specialist hervibores: predation on NE Pacific sacoglossan gastropods. Marine Ecology Progress Series 105, 6170.CrossRefGoogle Scholar
Trowbridge, C.D. (2002) Northeastern pacific sacoglossan opisthobranchs: natural history review, bibliography, and prospectus. Veliger 45, 124.Google Scholar
Trowbridge, C.D., Hirano, Y.J. and Hirano, Y.M. (2008) Sacoglossan opisthobranchs associated with the green macroalgae Codium spp. on the Pacific rocky shores of Japan. Venus 66, 175190.Google Scholar
Trowbridge, C.D., Hirano, Y.M., Hirano, Y.J., Sudo, K., Shimadu, Y., Watanabe, T., Yorifuji, M., Maeda, Y., Anetai, Y. and Kumagai, K. (2010) Subtropical sacoglossans in Okinawa—at ‘special risk’ or ‘predictably rare’? American Malacological Bulletin 28, 167181.Google Scholar
Wägele, H., Ballesteros, M. and Avila, C. (2006) Deffensive glandular structures in opisthobranch molluscs—from histology to ecology. Oceanography and Marine Biology: an Annual Review 44, 197276.Google Scholar
Watson, N.A. and Rohde, K. (1993) Ultrastructure of sperm and spermiogenesis of Kronborgia isopodicola (Platyhelminthes, Fecampiidae). International Journal for Parasitology 23, 737744.Google Scholar
Williams, J.B. (1988) Further observations on Kronborgia isopodicola, with notes on the systematics of the Fecampiidae (Turbellaria: Rhabdocoela). New Zealand Journal of Zoology 15, 211221.CrossRefGoogle Scholar
Zamparo, D., Brooks, D.R., Hoberg, E.P. and McLennan, D.A. (2000) Phylogenetic analysis of the Rhabdocoela (Platyhelminthes) with emphasis on the Neodermata and relatives. Zoologica Scripta 30, 5977.Google Scholar