Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T13:59:47.837Z Has data issue: false hasContentIssue false

Regeneration in calcareous sponges (Porifera)

Published online by Cambridge University Press:  06 February 2015

A. Padua
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Avenida Carlos Chagas Filho, 373, CEP 21941–902 Rio de Janeiro, RJ, Brazil
M. Klautau*
Affiliation:
Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Avenida Carlos Chagas Filho, 373, CEP 21941–902 Rio de Janeiro, RJ, Brazil
*
Correspondence should be addressed to:M. Klautau, Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Zoologia, Avenida Carlos Chagas Filho, 373, CEP 21941–902 Rio de Janeiro, RJ, Brazil email: mklautau@biologia.ufrj.br

Abstract

Wounds caused by predation and/or physical disturbances to sessile marine animals are common. Consequently, these organisms had to develop strategies to endure such injuries and survive in such a dynamic environment. Sponges are known to possess one of the greatest capacities of regeneration among living metazoans, but this feature has been largely studied only in Demospongiae. In Calcarea, very few species have been investigated. Hence, we analysed the regeneration and speed rates from two regions (osculum and choanosome) of the body of a calcareous sponge: Ernstia sp. Only the osculum regenerated until the end of the experiment, while the choanosome simply cicatrized. Calcareous sponges seem to have a polarized regeneration closely related to their external morphology and level of individuality and integration. A brief review of the regeneration capacity in Calcarea is presented.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ayling, A.L. (1983) Growth and regeneration rates in thinly encrusting Demospongiae from temperate waters. Biological Bulletin 165, 343352.CrossRefGoogle ScholarPubMed
Basile, G., Cerrano, C., Radjasa, O., Povero, P. and Zocchi, E. (2009) ADP-ribosyl cyclase and abscisic acid are involved in the seasonal growth and in post-traumatic tissue regeneration of Mediterranean sponges. Journal of Experimental Marine Biology and Ecology 381, 1017.CrossRefGoogle Scholar
Bell, J.J. (2002) Regeneration rates in a sublittoral demosponge. Journal of the Marine Biological Association of the United Kingdom 82, 169170.CrossRefGoogle Scholar
Boury-Esnault, N. (1976) Morphogenèse expérimentale des papilles inhalantes de l’éponge Polymastia mamilaris (Muller). Archives de Zoologie Experimentale et Generale 117, 181196.Google Scholar
Carlson, B. M. (2007) Principles of regenerative biology. San Diego, CA: Academic Press – Elsevier.Google Scholar
Duckworth, A. R. (2003) Effect of wound size on the growth and regeneration of two temperate subtidal sponges. Journal of Experimental Marine Biology and Ecology 287, 139153.CrossRefGoogle Scholar
Funayama, N. (2010) The stem cell system in demosponges: insights into the origin of somatic stem cells. Development, Growth & Differentiation 52, 114.CrossRefGoogle ScholarPubMed
Funayama, N. (2012) The stem cell system in demosponges: suggested involvement of two types of cells: archeocytes (active stem cells) and choanocytes (food-entrapping flagellated cells). Development Genes and Evolution 223, 2338.CrossRefGoogle ScholarPubMed
Gaino, E., Burlando, B. and Buffa, P. (1987) Ultrastructural study of oogenesis and fertilization in Sycon ciliatum (Porifera, Calcispongiae). International Journal of Invertebrate Reproduction and Development 11, 7382.CrossRefGoogle Scholar
Gilliam, D.S., Walker, B.K., Saelens, S.J., Fahy, D.P. and Kosmynin, V.N. (2008) Recovery of injured giant barrel sponges, Xestospongia muta, offshore southeast Florida. In Proceedings of the 11th International Coral Reef Symposium, 7–11 July 2008. Fort Lauderdale, Florida, pp. 1230–1234.Google Scholar
Henry, L.A. and Hart, M. (2005) Regeneration from injury and resource allocation in sponges and corals – a review. International Review of Hydrobiology 90, 125158.CrossRefGoogle Scholar
Hoppe, W.F. (1988) Growth, regeneration and predation in three species of large coral reefs sponges. Marine Ecology Progress Series 50, 117125.CrossRefGoogle Scholar
Huxley, J.S. (1912) Some phenomena of regeneration in Sycon; with a note on the structure of its collar cells. Philosophical Transactions of the Royal Society of London B 202, 165189.Google Scholar
Jackson, J.B.C. (1979) Morphological strategies of sessile animals. In Larwood, G. and Rosen, B.R. (eds) Biology and systematics of colonial organisms. Systematics Association Special Vol. 11. London: Academic Press, pp. 499555.Google Scholar
Jackson, J.B.C. and Palumbi, S.R. (1979) Regeneration and partial predation in cryptic coral reef environments: preliminary experiments on sponges and ectoprocts. In Lévi, C. and Boury-Esnault, N. (eds) Biologie des spongiaires. Paris: Éditions du Centre National de la Recherche Scientifique. Volume 291, pp. 303308.Google Scholar
Jones, W.C. (1957) The contractility and healing behaviour of pieces of Leucosolenia complicata. Quarterly Journal of Microscopical Science 98, 203217.Google Scholar
Jones, W.C. (1958) The effect of reversing the internal water-current on the spicule orientation in Leucosolenia variabilis and L. complicata. Quarterly Journal of Microscopical Science 99, 263278.Google Scholar
Klautau, M., Azevedo, F., Cóndor-Lujan, B., Rapp, H.T., Collins, A. and Russo, C.A.M. (2013) A molecular phylogeny for the order Clathrinida rekindles and refines Haeckel's taxonomic proposal for calcareous sponges. Integrative and Comparative Biology 53, 447461.CrossRefGoogle ScholarPubMed
Korotkova, G.P. (1961a) Regeneration and somatic embryogenesis in the calcareous sponge Leucosolenia complicata Mont. Acta Biologica Hungarica 11, 315334.Google Scholar
Korotkova, G.P. (1961b) Regeneration and cellular proliferation in Leucosolenia complicata Mont. Leningrad University Herald 21, 3950 (in Russian).Google Scholar
Korotkova, G.P. (1963a) On the types of restoration processes in sponges. Acta Biologica Hungarica 13, 389406.Google Scholar
Korotkova, G.P. (1963b) Regeneration and somatic embryogenesis in calcareous sponges of the type Sycon. Leningrad University Herald 3, 3447 (in Russian).Google Scholar
Korotkova, G.P. (1969) Peculiarities of morphogenesis and development of the calcareous sponge Leucosolenia complicata Mont. from a small area of the body wall. Leningrad University Herald 15, 1522 (in Russian).Google Scholar
Korotkova, G.P. (1970) Regeneration and somatic embryogenesis in sponges. Symposia of the Zoological Society of London 25, 423436.Google Scholar
Korotkova, G.P. (1972) Regeneration of body parts of the calcareous sponge Sycon lingua. Works of the Leningrad Society of Naturalists 78, 155170 (in Russian).Google Scholar
Korotkova, G.P. and Gelihovskaia, M.A. (1963) Recherches expérimentales sur le phénomène de polarité chez les éponges calcaires tu type ascon. Cahiers de Biologie Marine IV, 4760.Google Scholar
Kürn, U., Rendulic, S., Tiozzo, S. and Lauzon, R.J. (2011) Asexual propagation and regeneration in colonial ascidians. Biological Bulletin 221, 4361.CrossRefGoogle ScholarPubMed
Lanna, E. and Klautau, M. (2010) Oogenesis and spermatogenesis in Paraleucilla magna (Porifera, Calcarea). Zoomorphology 129, 249261.CrossRefGoogle Scholar
Leys, S.P. and Lauzon, N.R.J. (1998) Hexactinellid sponge ecology: growth rates and seasonality in deep water sponges. Journal of Experimental Marine Biology and Ecology 230, 111129.CrossRefGoogle Scholar
Leys, S.P., Mackie, G.O. and Reiswig, H.M. (2007) The biology of glass sponges. In Sims, D.W. (ed.) Advances in marine biology. Volume 52. San Diego, CA: Academic Press, pp. 1145.Google Scholar
Maas, O. (1910) Über nichtregeneration bei Spongei. Archiv für Entwicklungsmechanik der organismen 30, 356378.CrossRefGoogle Scholar
Osinga, R., Tramper, J. and Wijffels, R.H. (1999) Cultivation of marine sponges. Marine Biotechnology 1, 509532.CrossRefGoogle ScholarPubMed
Pronzato, M. (1999) Sponge-fishing, disease and farming in the Mediterranean Sea. Aquatic Conservation: Marine and Freshwater Ecosystems 9, 485493.3.0.CO;2-N>CrossRefGoogle Scholar
Reiswig, H.M. (1973) Population dynamics of three Jamaican Demospongiae. Bulletin of Marine Science 23, 191226.Google Scholar
Rohde, S. and Schupp, P.J. (2012) Growth and regeneration of the elephant ear sponge Ianthella basta (Porifera). Hydrobiologia 687, 219226.CrossRefGoogle Scholar
Simpson, T.L. (1984) The cell biology of sponges. New York, NY: Springer Verlag.CrossRefGoogle Scholar
Tokin, B.P. (1963) Regeneration and somatic embryogenesis. Symposium Biologica Hungarica 3, 1145.Google Scholar
Turon, X., Tarjuelo, I. and Uriz, M.J. (1998) Growth dynamics and mortality of the encrusting sponge Crambe crambe (Poecilosclerida) in contrasting habitats: correlation with population structure and investment in defence. Functional Ecology 12, 631639.CrossRefGoogle Scholar
Tuzet, O. (1973) Éponges Calcaires. In Grassé, P.P. (ed.) Traité de Zoologie – Spongiaires – anatomie, physiologie, systematique, écologie. Paris: Masson et Cie, pp. 27132.Google Scholar
Tuzet, O. and Connes, R. (1962) Recherches histologiques sur la reconstitution de Sycon raphanus O.S. à partir de cellules dissociées. Vie et Milieu 13, 700710.Google Scholar
Tuzet, O. and Paris, J. (1963) Recherches sur la régénération de Sycon raphanus O.S. Vie et Milieu 14, 285291.Google Scholar
Verdenal, B. and Vacelet, J. (1990) Sponge culture on vertical ropes in the Northwestern Mediterranean Sea. In Rützler, K. (ed.) New perspectives in sponge biology. Washington, DC: Smithsonian Institution Press, pp. 416425.Google Scholar
Walters, J.D. and Pawlik, J.R. (2005) Is there a trade-off between wound-healing and chemical defenses among Caribbean reef sponges? Integrative and Comparative Biology 45, 352358.CrossRefGoogle Scholar
Wilson, H.V. (1907) On some phenomena of coalescence and regeneration in sponges. Journal of Experimental Zoology 5, 246258.Google Scholar
Wulff, J. (2010) Regeneration of sponges in ecological context: is regeneration an integral part of life history and morphological strategies? Integrative and Comparative Biology 50, 494505.CrossRefGoogle ScholarPubMed
Zocchi, E., Basile, G., Cerrano, C., Bavestrello, G., Giovine, M., Bruzzone, S., Guida, L., Carpaneto, A., Magrassi, R. and Usai, C. (2003) ABA- and cADPR-mediated effects on respiration and filtration downstream of the temperature-signaling cascade in sponges. Journal of Cell Science 116, 629636.CrossRefGoogle ScholarPubMed
Zocchi, E., Carpaneto, A., Cerrano, C., Bavestrello, G., Giovine, M., Bruzzone, S., Guida, L., Franco, L. and Usai, C. (2001) The temperature-signaling cascade in sponges involves a heat-gated cation channel, abscisic acid and cyclic ADP-ribose. Proceedings of the National Academy of Sciences USA 98, 1485914864.CrossRefGoogle ScholarPubMed