Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T11:32:34.988Z Has data issue: false hasContentIssue false

Reproductive patterns of the black starry sea urchin Arbacia stellata in Punta Banda, Baja California, Mexico

Published online by Cambridge University Press:  08 May 2019

Julia Patricia Díaz-Martínez
Affiliation:
División de Estudios de Posgrado, Universidad del Mar (UMAR), Campus Puerto Ángel, Distrito de San Pedro Pochutla, Puerto Ángel, Oaxaca, C.P. 70902, México
Eugenio De Jesús Carpizo-Ituarte*
Affiliation:
Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California (UABC), Ensenada, B.C. C.P. 22860, México
Francisco Benítez-Villalobos
Affiliation:
Instituto de Recursos, Universidad del Mar (UMAR), Campus Puerto Ángel, Distrito de San Pedro Pochutla, Puerto Ángel, Oaxaca, C.P. 70902, México
*
Author for correspondence: Eugenio de Jesús Carpizo-Ituarte, E-mail: ecarpizo@uabc.edu.mx

Abstract

Widely distributed species such as Arbacia stellata adjust patterns of their life history according to local conditions. In the present study the reproductive cycle of this species was analysed throughout a sampling year. Gonadal development cycle, sex ratio, actual fecundity and oocyte size distribution were characterized and the relationship of these reproductive characteristics with environmental variables such as sea surface temperature, photoperiod, chlorophyll a and net primary production evaluated. Our results showed that A. stellata is a gonochoric sea urchin. Gametogenesis was classified into six stages for both sexes (immature, growth, pre-maturity I, pre-maturity II, mature and spawning) and no synchrony was observed for the gonads between individuals. The female to male ratio was close to 1:1 in most months. The gonadosomatic index (GSI) showed significant differences between sexes or months; however, the highest values were observed during spring, with positive correlation with chlorophyll a. No significant differences were observed in the maturity index (MI) between sexes, with a positive correlation with temperature but negative with chlorophyll. Actual fecundity showed wide variations throughout the year and correlation with chlorophyll a and temperature. Oocyte size distribution was unimodal and the predominant frequency was that of mature oocytes. The reproductive cycle of A. stellata has a semi-continuous pattern for both sexes and partial spawning throughout the year in the sampling site. We observed nutrient assimilation in the gonads during spring and a larger reproductive activity from late summer to early winter.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bay-Schmith, E (1981) Ciclo anual de reproducción de Arbacia spatuligera (Valenciennes, 1846) en Bahía de Concepción. Boletin de la Sociedad de Biologia de Concepcion 51, 4759.Google Scholar
Benítez-Villalobos, F and Martínez-García, M (2012) Reproductive biology of the starfish Pharia pyramidatus (Echinodermata: Asteroidea) from the Mexican tropical Pacific. Journal of the Marine Biological Association of the United Kingdom 92, 14091418.Google Scholar
Benítez-Villalobos, F, Hernando Avila-Poveda, O, Díaz-Martínez, JP and Ruiz Bravo-Ruiz, A (2015) Gonad development stages and reproductive traits of Diadema mexicanum (Echinodermata: Echinoidea) from Oaxaca, Mexico. Invertebrate Reproduction and Development 59, 237249.Google Scholar
Brogger, MI, Martinez, MI and Penchaszadeh, PE (2010) Reproduction of the sea urchin Arbacia dufresnii (Echinoidea: Arbaciidae) from Golfo Nuevo, Argentina. Journal of the Marine Biological Association of the United Kingdom 90, 14051409.Google Scholar
Brusca, RC (1980) Common Intertidal Invertebrates of the Gulf of California, 2nd Edn. Tucson, AZ: University of Arizona Press.Google Scholar
Burcham, D and Caruso, NL (2015) Abundance, size, and occurrence of Arbacia stellata in Orange County, California. California Fish and Game 101, 184187.Google Scholar
Byrne, M (1990) Annual reproductive cycles of the commercial sea urchin Paracentrotus lividus from an exposed intertidal and a sheltered subtidal habitat on the west coast of Ireland. Marine Biology 104, 275289.Google Scholar
Byrne, M, Andrew, NL, Worthington, DG and Brett, PA (1998) Reproduction in the diadematoid sea urchin Centrostephanus rodgersii in contrasting habitats along the coast of New South Wales, Australia. Marine Biology 132, 305318.Google Scholar
Carlton, RT (2007) The Light and Smith Manual: Intertidal Invertebrates from Central California to Oregon. Berkeley, CA: University of California Press.Google Scholar
Cervantes-Díaz, GY, Hernández-Ayón, JM, Durazo-Arvizu, R, Linacre-Rojas, LP, Camacho-Ibar, V, Lara-Lara, R, Siqueiros-Valencia, A and Bazán-Guzmán, C (2013) Variabilidad temporal del sistema del CO2 frente a las costas de Baja California. In Paz, F, Wong, J, Bazan, M and Saynes, V (eds), Estado Actual del Conocimiento del Ciclo del Carbono y sus Interacciones en México: Síntesis a 2013. Serie Síntesis Nacionales. Texcoco: Programa Mexicano del Carbono en colaboración con el Colegio de Postgraduados, la Universidad Autónoma de Chapingo y el Instituto Tecnológico y de Estudios Superiores de Monterrey, pp. 421427.Google Scholar
Clark, HL (1948) A Report on the Echini of the Warmer Eastern Pacific, Based on the Collections of the Vellero III. Allan Hancock Pacific Expeditions. Los Angeles, CA: University of Southern California Press.Google Scholar
Despalatović, M, Grubelić, I, Šimunović, A, Antolić, B and Žuljević, A (2004) Reproductive biology of the holothurian Holothuria tubulosa (Echinodermata) in the Adriatic Sea. Journal of the Marine Biological Association of the United Kingdom 84, 409414.Google Scholar
Dorey, N, Lançon, P, Thorndyke, M and Dupont, S (2013) Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH. Global Change Biology 19, 33553367.Google Scholar
Durazo, R (2015) Seasonality of the transitional region of the California Current System off Baja California. Journal of Geophysical Research: Oceans 120, 11731196.Google Scholar
Ebert, TA, Hernandez, JC and Russell, MP (2011) Problems of the gonad index and what can be done: analysis of the purple sea urchin Strongylocentrotus purpuratus. Marine Biology 158, 4758.Google Scholar
Engle, JM and Richards, DV (2001) New and unusual marine invertebrates discovered at the California Channel Islands during the 1997–1998 El Niño. Bulletin of the Southern California Academy of Sciences 100, 186198.Google Scholar
Epherra, L, Gil, DG, Rubilar, T, Perez-Gallo, S, Reartes, MB and Tolosano, JA (2015) Temporal and spatial differences in the reproductive biology of the sea urchin Arbacia dufresnii. Marine and Freshwater Research 66, 329342.Google Scholar
Feely, RA, Christopher, L, Sabine, J, Hernández-Ayón, M, Ianson, D and Hales, B (2008) Evidence for upwelling of corrosive ‘acidified’ water onto the continental shelf. Science 320, 14901492.Google Scholar
Gianguzza, P and Bonaviri, C (2013) Arbacia. In Lawrence, JM (ed.), Sea Urchins. Biology and Ecology. Amsterdam: Elsevier, pp. 275283.Google Scholar
Giese, AC and Pearse, JS (1974) Reproduction: general principles. In Giese, AC and Pearse, JS (eds), Reproduction of Marine Invertebrates. New York, NY: Academic Press, pp. 149.Google Scholar
Harvey, EB (1956) The American Arbacia and Other Sea Urchins. Princeton, NJ: Princeton University Press, 298 pp.Google Scholar
Holland, ND (1967) Gametogenesis during the annual reproductive cycle in a cidaroid sea urchin (Stylocidaris affinis). Biological Bulletin 133, 578590.Google Scholar
Hooker, Y, Solís-Marín, FA and Lleellish, M (2005) Equinodermos de las Islas Lobos de Afuera (Lambayeque, Perú). Revista Peruana de Biología 12, 7782.Google Scholar
Humason, GL (1979) Animal Tissue Techniques. San Francisco, CA: W.H. Freeman and Company Press.Google Scholar
Kazanidis, G, Lolas, A and Vafidis, D (2014) Reproductive cycle of the traditionally exploited sea cucumber Holothuria tubulosa (Holothuroidea: Aspidochirotida) in Pagasitikos Gulf, western Aegean Sea, Greece. Turkish Journal of Zoology 38, 306315.Google Scholar
Kino, S (2010) Reproduction and early life history of sea urchins, Arbacia dufresnei and Pseudechinus magellanicus, in Chiloé Island and Reloncaví Sound, Chile. Aquaculture Science 58, 6573.Google Scholar
Lessios, HA (2005) Echinoids of the Pacific waters of Panama: status of knowledge and new records. Revista de Biología Tropical 53, 147170.Google Scholar
Lessios, HA, Lockhart, S, Collin, R, Sotil, G, Sanchez-Jerez, P, Zigler, KS, Perez, AF, Garrido, MJ, Geyer, LB, Bernardi, G, Vacquier, VD, Haroun, R and Kessing, BD (2012) Phylogeography and bindin evolution in Arbacia, a sea urchin genus with an unusual distribution. Molecular Ecology 21, 132144.Google Scholar
Mercier, A and Hamel, JF (2009) Endogenous and exogenous control of gametogenesis and spawning in echinoderms. Advances in Marine Biology 55, 1302.Google Scholar
Metz, EC, Gómez-Gutiérrez, G and Vacquier, VD (1998) Mitochondrial DNA and binding gene sequence evolution among allopatric species of the sea urchin genus Arbacia. Molecular Biology and Evolution 15, 185195.Google Scholar
Morris, RH, Abbott, DP and Haderlie, EC (1980) Intertidal Invertebrates of California. Redwood City, CA: Stanford University Press, 690 pp.Google Scholar
Mortensen, T (1935) A Monograph of the Echinoidea, Vol. II. Copenhagen: C. A. Reitzel, 446 pp.Google Scholar
Nagy, IZ and Pieri, C (1975) A new method for very precise volumetry of organs of irregular shape. Mikroskopie 31, 7072.Google Scholar
Oliva-Méndez, N, Delgadillo-Hinojosa, F, Pérez-Brunius, P, Valencia-Gasti, A, Huerta-Diaz, MA, Palacios-Coria, E and Martín Hernández-Ayón, JM (2018) The carbonate system in coastal waters off the northern region of the Baja California Peninsula under La Niña conditions. Ciencias Marinas 44, 203220.Google Scholar
Olivares-Bañuelos, T, Figueroa-Flores, S and Carpizo-Ituarte, E (2012) Gonad index and larval development of the sand dollar Dendraster excentricus (Echinodermata; Echinoidea) in Baja California, Mexico. Ciencias Marinas 38, 411425.Google Scholar
Oyarzún, ST, Marín, SL, Valladares, C and Iriarte, JL (1999) Reproductive cycle of Loxechinus albus (Echinodermata: Echinoidea) in two areas of the Magellan region (53°S, 70–72°W), Chile. Scientia Marina 63(Suppl. 1), 439449.Google Scholar
Pearse, JS (1968) Patterns of reproductive periodicities in four species of Indo-Pacific echinoderms. Proceedings of the Indian Academy of Sciences – Section B 67, 247279.Google Scholar
Pearse, JS (1970) Reproductive periodicities of Indo-Pacific invertebrates in the Gulf of Suez. III. The echinoid Diadema setosum (Leske). Bulletin of Marine Science 20, 697720.Google Scholar
Pearse, JS and Cameron, RA (1991) Echinodermata, Echinoidea. In Giese, AC, Pearse, JS and Pearse, VB (eds), Reproduction of Marine Invertebrates. Pacific Groove, CA: Boxwood Press, pp. 514662.Google Scholar
Pearse, JS and Phillips, BF (1968) Continuous reproduction in the Indo-Pacific sea urchin Echinometra mathaei at Rottnest Island, western Australia. Australian Journal Marine and Freshwater Research 19, 161172.Google Scholar
Pearse, JS, McClintock, JB and Bosch, I (1991) Reproduction of Antarctic benthic marine invertebrates: tempos, modes, and timing. American Zoologist 31, 6580.Google Scholar
Pérez, AF, Boy, C, Morriconi, E and Calvo, J (2010) Reproductive cycle and reproductive output of the sea urchin Loxechinus albus (Echinodermata: Echinoidea) from Beagle Channel, Tierra del Fuego, Argentina. Polar Biology 33, 271280.Google Scholar
Ramírez-Llodra, E (2002) Fecundity and life-history strategies in marine invertebrates. Advances in Marine Biology 43, 87170.Google Scholar
Ramírez-Llodra, E, Tyler, PA and Billett, DSM (2002) Reproductive biology of porcellanasterid asteroids from three abyssal sites in the northeast Atlantic with contrasting food input. Marine Biology 140, 773788.Google Scholar
Scherle, W (1970) A simple method for volumetry of organs in quantitative stereology. Mikroskopie 26, 5760.Google Scholar
Sewell, MA (1992) Reproduction of the temperate Aspidochirote Stichopus mollis (Echinodermata: Holothuroidea) in New Zealand. Ophelia 35, 103121.Google Scholar
Shapiro, H (1935) A case of functional hermaphroditism in the sea-urchin, Arbacia punctulata, and an estimate of the sex-ratio. American Naturalist 69, 286288.Google Scholar
Stearns, SC (1992) The Evolution of Life Histories. New York, NY: Oxford University Press.Google Scholar
Stearns, SC (2000) Life history evolution: successes, limitations, and prospects. Science of Nature 87, 476486.Google Scholar
Stumpp, M, Wren, J, Melzner, F, Thorndyke, MC and Dupont, ST (2011) CO2 induced seawater acidification impacts sea urchin larval development. I: Elevated metabolic rates decrease scope for growth and induce developmental delay. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 160, 331340.Google Scholar
Tavares, YAG (2004). Biologia reprodutiva dos equinóides Echinometra lucunter (Linnaeus, 1758) e Arbacia lixula (Linnaeus, 1758) na Ilha da Galheta, litoral paranaense, Brasil.Google Scholar
Walker, CW, McGinn, NA, Harrington, LM and Lesser, MP (1998) New perspectives on sea urchin gametogenesis and their relevance to aquaculture. Journal of Shellfish Research 17, 15071514.Google Scholar
Walker, CW, Unuma, T and Lesser, MP (2007) Gametogenesis and reproduction of sea urchins. In Lawrence, JM (ed.), Edible Sea Urchins: Biology and Ecology, 2nd Edn. Amsterdam: Elsevier, pp. 1133.Google Scholar
Wangensteen, OS, Turon, X, Casso, M and Palacín, C (2013) The reproductive cycle of the sea urchin Arbacia lixula in northwest Mediterranean: potential influence of temperature and photoperiod. Marine Biology 160, 31573168.Google Scholar
Williamson, JE and Steinberg, PD (2002) Reproductive cycle of the sea urchin Holopneustes purpurascens (Temnopleuridae: Echinodermata). Marine Biology 140, 519532.Google Scholar
Yates, F (1934) Contingency tables involving small numbers and the χ 2 test. Supplement to the Journal of the Royal Statistical Society 1, 217235.Google Scholar
Zar, JH (2010) Biostatistical Analysis, 5th Edn. Upper Saddle River, NJ: Prentice Hall.Google Scholar