Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T19:22:59.509Z Has data issue: false hasContentIssue false

Reproductive physiology, temperature and biogeography: the role of fertilization in determining the distribution of the barnacle Semibalanus balanoides

Published online by Cambridge University Press:  17 April 2017

Sam Crickenberger*
Affiliation:
Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
David S. Wethey
Affiliation:
Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
*
Correspondence should be addressed to: S. Crickenberger, Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA. email: scricke@gmail.com

Abstract

Marine benthic populations are dependent on early life-history stages surviving multiple population bottlenecks. Failure at one or several of these bottlenecks can alter species’ patterns of distribution and abundance. The barnacle Semibalanus balanoides is found along temperate and sub-arctic shorelines of the Atlantic and Pacific Oceans. Over the past century the southern range limits of S. balanoides have shifted hundreds of kilometres poleward on both coasts of the Atlantic. Here we tested if temperature limits fertilization and used these data, along with those from previous studies, to create mechanistic biogeographic models to understand which potential population bottlenecks in the early life-history of S. balanoides influence its distribution and abundance. In the western Atlantic survival of new recruits is probably more important in setting the southern range limit than the effects of temperature on early life-history stages because fertilization, brooding and the probability of larval release matching phytoplankton availability were all predicted to be high near the historical range edge. Phytoplankton mismatch may partially explain the ephemeral nature of S. balanoides in some parts of the English Channel. Further south along the coast of France predicted brooding success was reduced in a pattern consistent with historical range shifts in this region. Within Galicia, Spain fertilization was predicted to be low near the southern limit, and likely plays an important role in setting this range edge. Mismatches between phytoplankton abundance and larval release in Galicia may further limit reproductive success within this region.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abernot-Le Gac, C., Antajan, E., Courtay, G., Drévès, L., Lamort, L., Martin, J., Pierre- Duplessix, O. and Schlaich, I. (2016) Surveillance écologique et halieutique du site électronucléaire de Flamanville-Année 2015. Internet resource. Available at http://archimer.ifremer.fr/doc/00327/43799 (accessed 21 February 2017).Google Scholar
Alexander, J.M. and Edwards, P.J. (2010) Limits to the niche and range margins of alien species. Oikos 119, 13771386.Google Scholar
Andronikov, V.B. (1963) Thermostability of the sex cells and zygotes of sea urchins. Tsitologiia 5, 234237.Google Scholar
Andronikov, V.B. (1975) Heat resistance of gametes of marine invertebrates in relation to temperature conditions under which the species exist. Marine Biology 30, 111.Google Scholar
Anger, K. and Dawirs, R.R. (1981) Influence of starvation on the larval development of Hyas araneus (Decapoda, Majidae). Helgoländer Meeresuntersuchungen 34, 287311.Google Scholar
Ardré, F., Cabañas Ruesgas, F., Fischer-Piette, E. and Seoane, J. (1958) Petite contribution à une monographie bionomique de la Ria de Vigo. Bulletin de I'Institut Océanographique de Monaco 1127, 156.Google Scholar
Barnes, H. (1956) Balanus balanoides (L.) in the Firth of Clyde: the development and annual variation of the larval population, and the causative factors. Journal of Animal Ecology 25, 7284.Google Scholar
Barnes, H. (1957) Processes of restoration and synchronization in marine ecology; the spring diatom increase and the ‘spawning’ of the common barnacle Balanus balanoides (L.). L'Année Biologique 33, 6785.Google Scholar
Barnes, H. (1958) Regarding the southern limits of Balanus balanoides (L.). Oikos 9, 139157.Google Scholar
Barnes, H. (1962) Note on variations in the release of nauplii of Balanus balanoides with special reference to the spring diatom outburst. Crustaceana 4, 118122.Google Scholar
Barnes, H. (1963) Light, temperature and the breeding of Balanus balanoides. Journal of the Marine Biological Association of the United Kingdom 43, 717727.Google Scholar
Barnes, H. and Achituv, Y. (1976) The utilization of various biochemical entities in gonadally mature Balanus balanoides (L.) under starvation and feeding in the absence of copulation. Journal of Experimental Marine Biology and Ecology 22, 257262.Google Scholar
Barnes, H. and Barnes, M. (1959) A comparison of the annual growth patterns of Balanus balanoides (L.) with particular reference to the effect of food and temperature. Oikos 10, 118.Google Scholar
Barnes, H. and Barnes, M. (1966) Ecological and zoogeographical observations on some of the common intertidal cirripedes of the coasts of the western European mainland in June–September, 1963. In Barnes, H. (ed.) Some contemporary studies in marine science. London: Allen & Unwin, pp. 83105.Google Scholar
Barnes, H. and Barnes, M. (1976) The rate of development of the embryos of Balanus balanoides (L.) from a number of European and American populations and the designation of local races. Journal of Experimental Marine Biology and Ecology 24, 251269.Google Scholar
Barnes, H., Barnes, M. and Klepal, W. (1972) Some cirripedes of the French Atlantic coast. Journal of Experimental Marine Biology and Ecology 8, 187194.Google Scholar
Barnes, H. and Crisp, D.J. (1956) Evidence of self-fertilisation in certain species of barnacles. Journal of the Marine Biological Association of the United Kingdom 35, 631639.Google Scholar
Barnes, H. and Powell, H.T. (1966) Notes on the occurrence of Balanus balanoides, Elminius modestus, Fucus serratus and Littorea littoralis at Arcachon, France, in 1963 and 1964. In Barnes, H. (ed.) Some contemporary studies in marine science. London: Allen & Unwin, pp. 107111.Google Scholar
Bennell, S.J. (1981) Some observations on the littoral barnacle populations of North Wales. Marine Environmental Research 5, 227240.Google Scholar
Brun, P., Kiørboe, T., Licandro, P. and Payne, M. R. (2016) The predictive skill of species distribution models for plankton in a changing climate. Global Change Biology 22, 31703181.Google Scholar
Burrows, M.T., Jenkins, S.R., Robb, L. and Harvey, R. (2010) Spatial variation in size and density of adult and post-settlement Semibalanus balanoides: effects of oceanographic and local conditions. Marine Ecology Progress Series 398, 207219.Google Scholar
Carroll, M.L. and Wethey, D.S. (1990) Predator foraging behavior: effect of a novel prey species on prey selection by a marine intertidal gastropod. Journal of Experimental Marine Biology and Ecology 139, 101117.Google Scholar
Clark, P.J. and Evans, F.C. (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445453.Google Scholar
Clegg, D.J. (1957) Some observations on pairing in Balanus balanoides. Annual Report of the Challenger Society 3, 1819.Google Scholar
Connell, J.H. (1961) Effects of competition, predation by Thais lapillus, and other factors on natural populations of the barnacle Balanus balanoides. Ecological Monographs 31, 61104.Google Scholar
Copernicus (2016) Optimally interpolated 4 km daily global chlorophyll a. Internet resource. Available at http://marine.copernicus.eu/services-portfolio/access-toproducts/?option=com_csw&view=details&product_id=OCEANCOLOUR_GLO_CHL_L4_NRT_OBSERVATIONS_009_033 (accessed 21 February 2017).Google Scholar
Cowen, R.K. and Sponaugle, S. (2009) Larval dispersal and marine population connectivity. Annual Review of Marine Science 1, 443466.Google Scholar
Crisp, D.J. (1956) A substance promoting hatching and liberation of young in cirripedes. Nature 178, 263.Google Scholar
Crisp, D.J. (1957) Effect of low temperature on the breeding of marine animals. Nature 179, 11381139.Google Scholar
Crisp, D.J. (1958) The spread of Elminius modestus Darwin in north-west Europe. Journal of the Marine Biological Association of the United Kingdom 37, 483520.Google Scholar
Crisp, D.J. (1959a) Factors influencing the time of breeding of Balanus balanoides. Oikos 10, 275289.Google Scholar
Crisp, D.J. (1959b) The rate of development of Balanus balanoides (L.) embryos in vitro. Journal of Animal Ecology 28, 119132.Google Scholar
Crisp, D.J. (1964) Racial differences between North American and European forms of Balanus balanoides. Journal of the Marine Biological Association of the United Kingdom 44, 3345.Google Scholar
Crisp, D.J. and Clegg, D.J. (1960) The induction of the breeding condition in Balanus balanoides. Oikos 11, 265275.Google Scholar
Crisp, D.J. and Fischer-Piette, E. (1959) Répartition des principales espèces intercotidales de la côte atlantique française en 1954–1955. Annales de l'Institute Océanographique Monaco 36, 276381.Google Scholar
Crisp, D.J. and Patel, B. (1969) Environmental control of the breeding of three boreo-arctic cirripedes. Marine Biology 2, 283295.Google Scholar
Crisp, D.J. and Southward, A.J. (1958) The distribution of intertidal organisms along the coasts of the English Channel. Journal of the Marine Biological Association of the United Kingdom 37, 157203.Google Scholar
Crisp, D.J. and Spencer, C.P. (1958) The control of the hatching process in barnacles. Proceedings of the Royal Society of London. Series B, Biological Sciences 149, 278299.Google Scholar
Darwin, C. (1854) A monograph on the sub-class Cirripedia, with figures of all the species. Volume 2. The Balanidæ (or sessile cirripedes); the Verrucidæ, etc. London: Ray Society, no. 25, 684 pp.Google Scholar
Davenport, J., Berggren, M.S., Brattegard, T., Brattenborg, N., Burrows, M., Jenkins, S., McGrath, D., MacNamara, R., Sneli, J.-A., Walker, G. and Wilson, S. (2005) Doses of darkness control latitudinal differences in breeding date in the barnacle Semibalanus balanoides. Journal of the Marine Biological Association of the United Kingdom 85, 5963.Google Scholar
Drévès, L. (2001) Effets climatiques sur les écosystèmes marins. Exemple du recrutement des Crustacés Cirripèdes sur la côte ouest du Cotentin. Hydroécologie Appliquée 13, 101112.Google Scholar
Donlon, C.J., Martin, M., Stark, J., Roberts-Jones, J., Fiedler, E. and Wimmer, W. (2011) The operational sea surface temperature and sea ice analysis (OSTIA). Remote Sensing of the Environment 116, 140158.Google Scholar
Elith, J. and Leathwick, J.R. (2009) Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40, 677697.Google Scholar
Emlet, R.B. and Sadro, S.S. (2006) Linking stages of life history: how larval quality translates into juvenile performance for an intertidal barnacle (Balanus glandula). Integrative and Comparative Biology 46, 334346.Google Scholar
Finley, J.P. (1884) Tornado predictions. American Meterological Journal 1, 8588.Google Scholar
Fischer, P. (1872) Crustacés podophthalmaires et cirrhipedes du département de la Gironde et des côtes du sud-ouest de la France. Actes de la Société Linnéenne de Bordeaux 28, 405438.Google Scholar
Fischer-Piette, E. (1936) Études sur la biogéographie intercôtidale des deux rives de la Manche. Journal of the Linnean Society of London, Zoology 40, 181272.Google Scholar
Fischer-Piette, E. (1963) La distribution des principaux organismes intercotidaux nord-ibériques en 1954–1955. Annales de l'Institute Océanographique Monaco 40, 165312.Google Scholar
Fischer-Piette, E. and Prenant, M. (1956) Distribution des cirripèdes intercotidaux d'Espagne septentrionale. Bulletin du Centre d’Études et Recherches Scientifiques Biarritz 1, 719.Google Scholar
Fischer-Piette, E. and Prenant, M. (1957) Quelques données ecologiques sur les cirripedes intercotidaux du Portugal, de l'Espagne du sud et du nord du Maroc. Bulletin du Centre d’Études et Recherches Scientifiques Biarritz 1, 361368.Google Scholar
Foster, B.A. (1969) Tolerance of high temperatures by some intertidal barnacles. Marine Biology 4, 326332.Google Scholar
HADISST (2016) Hadley Centre sea ice and sea surface temperature data set (HadISST). Internet resource. Available at http://www.metoffice.gov.uk/hadobs/hadisst (accessed 21 February 2017).Google Scholar
Harms, J. (1984) Influence of water temperature on larval development of Elminius modestus and Semibalanus balanoides (Crustacea, Cirripedia). Helgoländer Meeresuntersuchungen 38, 123134.Google Scholar
Hawkins, S.J. and Hartnoll, R.G. (1982) Settlement patterns of Semibalanus balanoides (L.) in the Isle of Man (1977–1981). Journal of Experimental Marine Biology and Ecology 62, 271283.Google Scholar
Hawkins, S.J., Moore, P.J., Burrows, M.T., Poloczanska, E., Mieszkowska, N., Herbert, R.J.H., Jenkins, S.R., Thompson, R.C., Genner, M.J. and Southward, A.J. (2008) Complex interactions in a rapidly changing world: responses of rocky shore communities to recent climate change. Climate Research 37, 123133.Google Scholar
Hawkins, S.J., Sugden, H.E., Mieszkowska, N., Moore, P.J., Poloczanska, E., Leaper, R., Herbert, R.J.H., Genner, M.J., Moschella, P.S., Thompson, R.C., Jenkins, S.R., Southward, A.J. and Burrows, M.T. (2009) Consequences of climate-driven biodiversity changes for ecosystem functioning of North European rocky shores. Marine Ecology Progress Series 396, 245259.Google Scholar
Herbert, R.J.H., Southward, A.J., Clarke, R.T., Sheader, M. and Hawkins, S.J. (2009) Persistent border: an analysis of the geographic boundary of an intertidal species. Marine Ecology Progress Series 379, 135150.Google Scholar
Herbert, R.J.H., Southward, A.J., Sheader, M. and Hawkins, S.J. (2007) Influence of recruitment and temperature on distribution of intertidal barnacles in the English Channel. Journal of the Marine Biological Association of the United Kingdom 87, 487499.Google Scholar
Hutchins, L.W. (1947) The bases for temperature zonation in geographical distribution. Ecological Monographs 17, 325335.Google Scholar
Hyder, K., Johnson, M.P., Hawkins, S.J. and Gurney, W.S.C. (1998) Barnacle demography: evidence for an existing model and spatial scales of variation. Marine Ecology Progress Series 174, 8999.Google Scholar
Jarrett, J.N. (2003) Seasonal variation in larval condition and postsettlement performance of the barnacle Semibalanus balanoides. Ecology 84, 384390.Google Scholar
Jenkins, S.R., Åberg, P., Cervin, G., Coleman, R.A., Delany, J., Della Santina, P., Hawkins, S.J., LaCroix, E., Myers, A.A., Lindegarth, M., Power, A.-M., Roberts, M.F. and Hartnoll, R.G. (2000) Spatial and temporal variation in settlement and recruitment of the intertidal barnacle Semibalanus balanoides (L.) (Crustacea: Cirripedia) over a European scale. Journal of Experimental Marine Biology and Ecology 243, 209225.Google Scholar
Jenkins, S.R., Åberg, P., Cervin, G., Coleman, R.A., Delany, J., Hawkins, S.J., Hyder, K., Myers, A.A., Paula, J., Power, A.-M., Range, P. and Hartnoll, R.G. (2001) Population dynamics of the intertidal barnacle Semibalanus balanoides at three European locations: spatial scales of variability. Marine Ecology Progress Series 217, 207217.Google Scholar
Jenkins, S.R., Murua, J. and Burrows, M.T. (2008) Temporal changes in the strength of density-dependent mortality and growth in intertidal barnacles. Journal of Animal Ecology 77, 573584.Google Scholar
Jones, S.J., Southward, A.J. and Wethey, D.S. (2012) Climate change and historical biogeography of the barnacle Semibalanus balanoides. Global Ecology and Biogeography 21, 716724.Google Scholar
Kearney, M. and Porter, W. (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters 12, 334350.Google Scholar
Keith, S.A., Herbert, R.J.H., Norton, P.A., Hawkins, S.J. and Newton, A.C. (2011) Individualistic species limitations of climate-induced range expansions generated by meso-scale dispersal barriers. Diversity and Distributions 17, 275286.Google Scholar
Kendall, M.A., Bowman, R.S., Williamson, P. and Lewis, J.R. (1985) Annual variation in the recruitment of Semibalanus balanoides on the North Yorkshire coast 1969 1981. Journal of the Marine Biological Associations of the United Kingdom 65, 10091030.Google Scholar
Kent, A., Hawkins, S.J. and Doncaster, C.P. (2003) Population consequences of mutual attraction between settling and adult barnacles. Journal of Animal Ecology 72, 941952.Google Scholar
Liu, C., White, M. and Newell, G. (2011) Measuring and comparing the accuracy of species distribution models with presence-absence data. Ecography 34, 232243.Google Scholar
Lucas, M.I. and Crisp, D.J. (1987) Energy metabolism of eggs during embryogenesis in Balanus balanoides. Journal of the Marine Biological Association of the United Kingdom 67, 2754.Google Scholar
Macho, G., Vázquez, E., Giráldez, R. and Molares, J. (2010) Spatial and temporal distribution of barnacle larvae in the partially mixed estuary of the Ría de Arousa (Spain). Journal of Experimental Marine Biology and Ecology 392, 129139.Google Scholar
McDougall, K.D. (1943) Sessile marine invertebrates of Beaufort, North Carolina: a study of settlement, growth, and seasonal fluctuations among pile-dwelling organisms. Ecological Monographs 13, 321374.Google Scholar
Mieszkowska, N. (2011) MarClim Annual Welsh Intertidal Climate Monitoring Survey 2010. Report to Countryside Council for Wales. CCW Science Report No. 962. 25 pp.Google Scholar
Mieszkowska, N., Burrows, M.T., Pannacciulli, F.G. and Hawkins, S.J. (2014) Multidecadal signals within co-occurring intertidal barnacles Semibalanus balanoides and Chthamalus spp. linked to the Atlantic Multidecadal Oscillation. Journal of Marine Systems 133, 7076.Google Scholar
Mohammed, M.-B.M. (1961) A new record for Balanus balanoides (L.). Limnology and Oceanography 6, 488.Google Scholar
NBN (2016) National Biodiversity Network. Internet resource. Available at https://nbn.org.uk (accessed 21 February 2017).Google Scholar
OISST (2016) Optimum interpolation sea surface temperature (OISST). Internet resource. Available at https://www.ncdc.noaa.gov/oisst (accessed 21 February 2017).Google Scholar
OSTIA (2016a) Global ocean OSTIA sea surface temperature and sea ice analysis. Internet resource. Available at http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001 (accessed 21 February 2017).Google Scholar
OSTIA (2016b) Global ocean OSTIA sea surface temperature and sea ice reprocessed (1985–2007). Internet resource. Available at http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SST_GLO_SST_L4_REP_OBSERVATIONS_010_011 (accessed 21 February 2017).Google Scholar
Pechenik, J.A. (2006) Larval experience and latent effects – metamorphosis is not a new beginning. Integrative and Comparative Biology 46, 323333.Google Scholar
Pilsbry, H. (1916) The sessile barnacles (Cirripedia) contained in the U.S. National Museum; Including a monograph of the American species. United States National Museum Bulletin, 93, 366 pp.Google Scholar
Pineda, J., Reyns, N.B. and Starczak, V.R. (2009) Complexity and simplification in understanding recruitment in benthic populations. Population Ecology 51, 1732.Google Scholar
Pineda, J., Riebensahm, D. and Medeiros-Bergen, D. (2002) Semibalanus balanoides in winter and spring: larval concentration, settlement, and substrate occupancy. Marine Biology 140, 789800.Google Scholar
Poloczanska, E.S., Brown, C.J., Sydeman, W.J., Kiessling, W., Schoeman, D.S., Moore, P.J., Brander, K., Bruno, J.F., Buckley, L.B., Burrows, M.T., Duarte, C.M., Halpern, B.S., Holding, J., Kappel, C.V., O'Connor, M.I., Pandolfi, J.M., Parmesan, C., Schwing, F., Thompson, S.A. and Richardson, A.J. (2013) Global imprint of climate change on marine life. Nature Climate Change 3, 919925.Google Scholar
Poloczanska, E.S., Hawkins, S.J., Southward, A.J. and Burrows, M.T. (2008) Modeling the response of populations of competing species to climate change. Ecology 89, 31383149.Google Scholar
Przeslawski, R., Byrne, M. and Mellin, C. (2015) A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Global Change Biology 21, 21222140.Google Scholar
Qiu, J.-W., Gosselin, L.A. and Qian, P.-Y. (1997) Effects of short-term variation in food availability on larval development in the barnacle Balanus amphitrite amphitrite. Marine Ecology Progress Series 161, 8391.Google Scholar
R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Internet resource. Available at https://www.R-project.org (accessed 21 February 2017).Google Scholar
Rayner, N.A., Brohan, P., Parker, D.E., Folland, C.K., Kennedy, J.J., Vanicek, M., Ansell, T.J. and Tett, S.F.B. (2005) Improved analyses of changes and uncertainties in sea surface temperatures measured in situ since the mid-nineteenth century: the HadSST2 dataset. Journal of Climate 19, 446469.Google Scholar
Rayner, N.A., Parker, D.E., Horton, E.B., Folland, C.K., Alexander, L.V., Rowell, D.P., Kent, E.C. and Kaplan, A. (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research: Atmospheres 108, 4407.Google Scholar
Reiss, H., Cunze, S., König, K., Neumann, H. and Kröncke, I. (2011) Species distribution modelling of marine benthos: a North Sea case study. Marine Ecology Progress Series 442, 7186.Google Scholar
Reynolds, R.W., Smith, T.M., Liu, C., Chelton, D.B., Casey, K.S. and Schlax, M.G. (2007) Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate 20, 54735496.Google Scholar
Roberts-Jones, J., Fiedler, E.K. and Martin, J.M. (2012) Daily, global, high-resolution SST and sea ice reanalysis for 1985–2007 using the OSTIA system. Journal of Climate 25, 62156232.Google Scholar
Robinson, L.M., Elith, J., Hobday, A.J., Pearson, R.G., Kendall, B.E., Possingham, H.P. and Richardson, A.J. (2011) Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Global Ecology and Biogeography 20, 789802.Google Scholar
Rognstad, R.L. and Hilbish, T.J. (2014) Temperature-induced variation in the survival of brooded embryos drives patterns of recruitment and abundance in Semibalanus balanoides. Journal of Experimental Marine Biology and Ecology 461, 357363.Google Scholar
Rognstad, R.L., Wethey, D.S. and Hilbish, T.J. (2014) Connectivity and population repatriation: limitations of climate and input into the larval pool. Marine Ecology Progress Series 495, 175183.Google Scholar
SAS Institute (2013) JMP Version 11. Cary, North Carolina: SAS Institute Inc., Internet resource. Available at http://www.jmp.com (accessed 21 February 2017).Google Scholar
Saulquin, B., Gohin, F. and Garrello, R. (2011) Regional objective analysis for merging high-resolution MERIS, MODIS/Aqua, and SeaWiFS chlorophyll-a data from 1998 to 2008 on the European Atlantic Shelf. IEEE Transactions on Geoscience and Remote Sensing 49, 143154.Google Scholar
Simkanin, C., Power, A.M., Myers, A., McGrath, D., Southward, A., Mieszkowska, N., Leaper, R. and O'Riordan, R. (2005) Using historical data to detect temporal changes in the abundances of intertidal species on Irish shores. Journal of the Marine Biological Association of the United Kingdom 85, 13291340.Google Scholar
Singer, A., Schückel, U., Beck, M., Bleich, O., Brumsack, H.-J., Freund, H., Geimecke, C., Lettmann, K.A., Millat, G., Staneva, J., Vanselow, A., Westphal, H., Wolff, J.-O., Wurpts, A. and Kröncke, I. (2016) Small-scale benthos distribution modelling in a North Sea tidal basin in response to climatic and environmental changes (1970s–2009). Marine Ecology Progress Series 551, 1330.Google Scholar
Southward, A.J. (1967) Recent changes in abundance of intertidal barnacles in south-west England: a possible effect of climatic deterioration. Journal of the Marine Biological Association of the United Kingdom 47, 8195.Google Scholar
Southward, A.J. (1991) Forty years of changes in species composition and population density of barnacles on a rocky shore near Plymouth. Journal of the Marine Biological Association of the United Kingdom 71, 495513.Google Scholar
Southward, A.J. and Crisp, D.J. (1954) Recent changes in the distribution of the intertidal barnacles Chthamalus stellatus Poli and Balanus balanoides L. in the British Isles. Journal of Animal Ecology 23, 163177.Google Scholar
Southward, A.J. and Crisp, D.J. (1956) Fluctuations in the distribution and abundance of intertidal barnacles. Journal of the Marine Biological Association of the United Kingdom 35, 211229.Google Scholar
Southward, A.J., Hawkins, S.J. and Burrows, M.T. (1995) Seventy years’ observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature. Journal of Thermal Biology 20, 127155.Google Scholar
Stubbings, H.G. (1975) Balanus balanoides. Liverpool: Liverpool University Press, 175 pp. [Liverpool Marine Biology Committee Memoirs, no. 37.Google Scholar
Svensson, C.J., Jenkins, S.R., Hawkins, S.J. and Åberg, P. (2005) Population resistance to climate change: modelling the effects of low recruitment in open populations. Oecologia 142, 117126.Google Scholar
Svensson, C.J., Jenkins, S.R., Hawkins, S.J., Myers, A.A., Range, P., Paula, J., O'Riordan, R.M. and Åberg, P. (2004) Models of open populations with space-limited recruitment in stochastic environments: relative importance of recruitment and survival in populations of Semibalanus balanoides. Marine Ecology Progress Series 275, 185197.Google Scholar
Tarasov, N. (1937) Contribution to the fauna of Cirripedia Thoracica of the Arctic Ocean. III. Transactions of the Arctic Institute, Leningrad 50, 3559.Google Scholar
Thomas, Y., Mazurié, J., Alunno-Bruscia, M., Bacher, C., Bouget, J.-F., Gohin, F., Pouvreau, S. and Struski, C. (2011) Modeling spatio-temporal variability of Mytilus edulis (L.) growth by forcing a dynamic energy budget model with satellite-derived environmental data. Journal of Sea Research 66, 308317.Google Scholar
Tighe-Ford, D.J. (1967) Possible mechanism for the endocrine control of breeding in a cirripede. Nature 216, 920921.Google Scholar
Torres, G., Giménes, L., Pettersen, A.K., Bue, M., Burrows, M.T. and Jenkins, S.R. (2016) Persistent and context-dependent effects of the larval feeding environment on post-metamorphic performance through the adult stage. Marine Ecology Progress Series 545, 147160.Google Scholar
Turner, J.T., Levinsen, H., Nielsen, T.G. and Hansen, B.W. (2001) Zooplankton feeding ecology: grazing on phytoplankton and predation on protozoans by copepod and barnacle nauplii in Disko Bay, West Greenland. Marine Ecology Progress Series 221, 209219.Google Scholar
Ushakov, B. (1964) Thermostability of cells and proteins of poikilotherms and its significance in speciation. Physiological Reviews 44, 518560.Google Scholar
Walther, K., Crickenberger, S.E., Marchant, S., Marko, P.B. and Moran, A.L. (2013) Thermal tolerance of larvae of Pollicipes elegans, a marine species with an antitropical distribution. Marine Biology 160, 27232732.Google Scholar
Wells, H.W., Wells, M.J. and Gray, I.E. (1960) On the southern limit of Balanus balanoides in the Western Atlantic. Ecology 41, 578580.Google Scholar
Wethey, D.S. and Woodin, S.A. (2008) Ecological hindcasting of biogeographic responses to climate change in the European intertidal zone. Hydrobiologia 606, 139151.Google Scholar
Wethey, D.S., Woodin, S.A., Hilbish, T.J., Jones, S.J., Lima, F.P. and Brannock, P.M. (2011) Response of intertidal populations to climate: effects of extreme events versus long term change. Journal of Experimental Marine Biology and Ecology 400, 132144.Google Scholar
Woodin, S.A., Hilbish, T.J., Helmuth, B., Jones, S.J. and Wethey, D.S. (2013) Climate change, species distribution models, and physiological performance metrics: predicting when biogeographic models are likely to fail. Ecology and Evolution 3, 33343346.Google Scholar
Yuen, B. and Hoch, J.M. (2010) Factors influencing mating success in the acorn barnacle, Semibalanus balanoides. Journal of Crustacean Biology 30, 373376.Google Scholar
Supplementary material: File

Crickenberger and Wethey supplementary material

Figures S1 and S2

Download Crickenberger and Wethey supplementary material(File)
File 1.2 MB