Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T23:55:49.980Z Has data issue: false hasContentIssue false

Use of stable isotope ratios to characterize potential shifts in the isotopic niches of grazing insects following an amphibian decline in a Neotropical stream

Published online by Cambridge University Press:  23 May 2013

Thomas R. Barnum*
Affiliation:
Odum School of Ecology, University of Georgia, Athens, GA, USA
Piet Verburg
Affiliation:
National Institute of Water and Atmospheric Research, Hamilton, New Zealand
Susan S. Kilham
Affiliation:
Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA, USA
Matt R. Whiles
Affiliation:
Department of Zoology and Center for Ecology, Southern Illinois University, Carbondale, IL, USA
Karen R. Lips
Affiliation:
Department of Biology, University of Maryland, College Park, MD, USA
Checo Colón-Gaud
Affiliation:
Department of Biology, Georgia Southern University, Statesboro, GA, USA
Catherine M. Pringle
Affiliation:
Odum School of Ecology, University of Georgia, Athens, GA, USA
*
1Corresponding author. Email: barnutr@uga.edu

Abstract:

Neotropical streams are losing dominant consumer groups as a result of disease-driven amphibian declines. The herbivorous tadpoles of Lithobates warszewitschii were once abundant in the Rio Maria in the Eastern Cordillera Central of Panama, where they consumed algae and organic matter. The decline of this once abundant grazer has the potential to affect the resources consumed by insect grazers in this system. Stable isotopes were used to characterize changes in the resource use before and after amphibian declines of four abundant insect grazer taxa: Stenonema spp., Thraulodes spp., Psephenus spp. and Petrophila spp. We collected 11 isotope samples of L. warszewitschii and 27 isotope samples of these insect taxa in 2006, and then 24 more isotope samples of the same insect taxa in 2008, 20 mo. after a disease-driven amphibian extirpation. We also tested for potential functional redundancy of insects with tadpoles by comparing the post-decline isotopic niche of each insect taxon to the isotopic niche of L. warszewitschii. The isotopic niche of Psephenus spp., Petrophila spp. and Stenonema spp. shifted from 2006 to 2008, but none of the insect taxa in 2008 occupied the same isotopic niche as tadpoles. Our study builds on previous evidence that the ecological roles of tadpoles were not replaced through functional redundancy after amphibian declines.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BEARHOP, S., ADAMS, C. E., WALDRON, S., FULLER, R. A. & MACLEOD, H. 2004. Determining trophic niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology 73:10071012.CrossRefGoogle Scholar
BENKE, A. C., HURYN, A. D., SMOCK, L. A. & WALLACE, J. B. 1999. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. Journal of the North American Benthological Society 18:308343.CrossRefGoogle Scholar
BOLNICK, D. I., SVANBÄCK, R., FORDYCE, J. A., YANG, L. H., DAVIS, J. M., HULSEY, C. D. & FORISTER, M. L. 2003. The ecology of individuals: incidence and implications of individual specialization. American Naturalist 161:128.CrossRefGoogle ScholarPubMed
BOYERO, L., RAMÍREZ, A., DUDGEON, D. & PEARSON, R. G. 2009. Are tropical streams really different? Journal of the North American Benthological Society 28:397403.CrossRefGoogle Scholar
COLÓN-GAUD, C., WHILES, M. R., BRENES, R., KILHAM, S. S., LIPS, K. R., PRINGLE, C. M., CONNELLY, S. & PETERSON, S. D. 2010a. Potential functional redundancy and resource facilitation between tadpoles and insect grazers in tropical headwater streams. Freshwater Biology 55:20772088.CrossRefGoogle Scholar
COLÓN-GAUD, C., WHILES, M. R., LIPS, K. R., PRINGLE, C. M., KILHAM, S. S., CONNELLY, S., BRENES, R. & PETERSON, S. D. 2010b. Stream invertebrate responses to a catastrophic decline in consumer diversity. Journal of the North American Benthological Society 29:11851198.CrossRefGoogle Scholar
CONNELLY, S., PRINGLE, C. M., BIXBY, R. J., BRENES, R., WHILES, M. R., LIPS, K. R., KILHAM, S. & HURYN, A. D. 2008. Changes in stream primary producer communities resulting from large-scale catastrophic amphibian declines: can small-scale experiments predict effects of tadpole loss? Ecosystems 11:12621276.CrossRefGoogle Scholar
FLECKER, A. S., FEIFAREK, B. P. & TAYLOR, B. W. 1999. Ecosystem engineering by a tropical tadpole: density-dependent effects on habitat structure and larval growth. Copeia 1999:495500.CrossRefGoogle Scholar
JACKSON, A. L., INGER, R., PARNELL, A. C. & BEARHOP, S. 2011. Comparing isotopic niche widths among and within communities: SIBER – Stable Isotope Bayesian Ellipses in R. Journal of Animal Ecology 80:595602.CrossRefGoogle ScholarPubMed
KUPFERBERG, S. 1997. Facilitation of periphyton production by tadpole grazing: functional differences between species. Freshwater Biology 37:427439.CrossRefGoogle Scholar
LAYMAN, C. A., ARRINGTON, D. A., MONTANA, C. G. & POST, D. M. 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:4248.CrossRefGoogle ScholarPubMed
MERRITT, R. W., CUMMINS, K. W. & BERG, M. B. 2008. An introduction to the aquatic insects of North America. (Fourth edition.) Kendall/Hunt Publishing, Dubuque. 1158 pp.Google Scholar
NEWSOME, S. D., MARTINEZ DEL RIO, C., BEARHOP, S. & PHILLIPS, D. L. 2007. A niche for isotopic ecology. Frontiers in Ecology and the Environment 5:429436.CrossRefGoogle Scholar
NILSSON, E., SOLOMON, C. T., WILSON, K. A., WILLIS, T. V., LARGET, B. & VANDER ZANDEN, M. J. 2012. Effects of an invasive crayfish on trophic relationships in north-temperate lake food webs. Freshwater Biology 57:1023.CrossRefGoogle Scholar
PARKER, S. M. & HURYN, A. D. 2006. Food web structure and function in two arctic streams with contrasting disturbance regimes. Freshwater Biology 5:12491263.CrossRefGoogle Scholar
PARNELL, A. C., INGER, R., BEARHOP, S. & JACKSON, A. L. 2010. Source partitioning using stable isotopes: coping with too much variation. PloS One 5:e9672.CrossRefGoogle ScholarPubMed
PEREIRA, H. M., LEADLEY, P. W., PROENÇA, V., ALKEMADE, R., SCHARLEMANN, J. P. W., FERNANDEZ-MANJARRÉS, J. F., ARAÚJO, M. B., BALVANERA, P., BIGGS, R., CHEUNG, W. W. L., CHINI, L., COOPER, H. D., GILMAN, E. L., GUÉNETTE, S., HURTT, G. C., HUNTINGTON, H. P., MACE, G. M., OBERDORFF, T., REVENGA, C., RODRIGUES, P., SCHOLES, R. J., SUMAILA, U. R. & WALPOLE, M. 2010. Scenarios for global biodiversity in the 21st century. Science 330:14961501.CrossRefGoogle Scholar
RANVESTEL, A. W., LIPS, K. R., PRINGLE, C. M., WHILES, M. R. & BIXBY, R. J. 2004. Neotropical tadpoles influence stream benthos: evidence for the ecological consequences of decline in amphibian populations. Freshwater Biology 49:274285.CrossRefGoogle Scholar
TURNER, T. F., COLLYER, M. L. & KRABBENHOFT, T. J. 2010. A general hypothesis-testing framework for stable isotope ratios in ecological studies. Ecology 91:22272233.CrossRefGoogle ScholarPubMed
VANDER ZANDEN, M. J. & CASSELMAN, J. M. 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401:19972000.CrossRefGoogle Scholar
VERBURG, P., KILHAM, S. S., PRINGLE, C. M., LIPS, K. R. & DRAKE, D. L. 2007. A stable isotope study of a neotropical stream food web prior to the extirpation of its large amphibian community. Journal of Tropical Ecology 23:643653.CrossRefGoogle Scholar
WHILES, M. R., LIPS, K. R., PRINGLE, C. M., KILHAM, S. S., BIXBY, R. J., BRENES, R., CONNELLY, S., COLON-GAUD, J. C., HUNTE-BROWN, M., HURYN, A. D., MONTGOMERY, C. & PETERSON, S. 2006. The effects of amphibian population declines on the structure and function of Neotropical stream ecosystems. Frontiers in Ecology and the Environment 4:2734.CrossRefGoogle Scholar
WHILES, M. R., HALL, R. O., DODDS, W. K., VERBURG, P., HURYN, A. D., PRINGLE, C. M., LIPS, K. R., KILHAM, S. S., COLÓN-GAUD, C., RUGENSKI, A. T., PETERSON, S. & CONNELLY, S. 2012. Disease-driven amphibian declines alter ecosystem processes in a tropical stream. Ecosystems 16:146157.CrossRefGoogle Scholar
ZEUG, S. C., PERETTI, D. & WINEMILLER, K. O. 2009. Movement into floodplain habitats by gizzard shad (Dorosoma cepedianum) revealed by dietary and stable isotope analyses. Environmental Biology of Fishes 84:307314.CrossRefGoogle Scholar