Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T14:56:51.748Z Has data issue: false hasContentIssue false

Can a fast-growing early-successional tree (Ochroma pyramidale, Malvaceae) accelerate forest succession?

Published online by Cambridge University Press:  19 March 2013

Ivar Vleut*
Affiliation:
El Colegio De La Frontera Sur (ECOSUR), Carretera Panamericana y Periférico Sur s/n, Barrio de María Auxiliadora, San Cristóbal de Las Casas, C.P. 29290, Chiapas, Mexico
Samuel Israel Levy-Tacher
Affiliation:
El Colegio De La Frontera Sur (ECOSUR), Carretera Panamericana y Periférico Sur s/n, Barrio de María Auxiliadora, San Cristóbal de Las Casas, C.P. 29290, Chiapas, Mexico
Willem Frederik de Boer
Affiliation:
Resource Ecology Group, Wageningen University, P.O. Box 47, 6400 AA, Wageningen, the Netherlands
Jorge Galindo-González
Affiliation:
Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Av. Culturas Veracruzanas #101, Colonia E. Zapata, C.P. 91090, Xalapa, Veracruz, Mexico
Neptalí Ramírez-Marcial
Affiliation:
El Colegio De La Frontera Sur (ECOSUR), Carretera Panamericana y Periférico Sur s/n, Barrio de María Auxiliadora, San Cristóbal de Las Casas, C.P. 29290, Chiapas, Mexico
*
1Corresponding author. Email: ivar82@yahoo.com

Abstract:

Species-specific traits of trees affect ecosystem dynamics, defining forest structure and understorey development. Ochroma pyramidale is a fast-growing tree species, with life-history traits that include low wood density, short-lived large leaves and a narrow open thin crown. We evaluated forest succession in O. pyramidale-dominated secondary forests, diverse secondary forests, both 10–15 y since abandonment, and rain forests by comparing height, density and basal area of all trees (> 5 cm dbh). Furthermore, we compared species richness of understorey trees and shrubs, and basal area and density of trees of early- and late-successional species (< 5 cm dbh) between forest types. We found that tree basal area (mean ± SD: 32 ± 0.9 m2 ha−1) and height (12.4 ± 1.8 m) of canopy trees were higher, and density (1450 ± 339 ha−1) lower in O. pyramidale forests than in diverse forests, and more similar to rain forest. Understorey shrub diversity and tree seedling density and diversity were lower in O. pyramidale forests than in diverse forests, but these forest types had a similar density of early- and late-successional trees. Canopy openness (> 15%) and leaf litter (> 10 cm) were both highest in O. pyramidale forests, which positively affected density of understorey trees and shrubs and negatively affected density of late-successional trees. In conclusion, O. pyramidale forests presented structural features similar to those of rain forest, but this constrained the establishment of understorey tree species, especially late-successional species, decreasing successional development.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AIDE, T. M., ZIMMERMAN, J. K., PASCARELLA, J. B., RIVERA, L. & MARCANO-VEGA, H. 2001. Forest regeneration in a chronosequence of tropical abandoned pastures: implications for restoration ecology. Restoration Ecology 8:328338.CrossRefGoogle Scholar
BYRNE, C. E. & NAGLE, D. C. 1997. Carbonization of wood for advanced materials applications. Carbon 35:259266.CrossRefGoogle Scholar
CARSON, W. P. & PETERSON, C. J. 1990. The role of litter in an old-field community: impact of litter quantity in different seasons on plant species richness and abundance. Oecologia 85:813.CrossRefGoogle Scholar
CHAPMAN, C. A. & CHAPMAN, L. J. 1999. Forest restoration in abandoned agricultural land: a case study from East Africa. Conservation Biology 13:13011311.CrossRefGoogle Scholar
COLEY, P. D. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs 53:209233.CrossRefGoogle Scholar
CUSACK, D. & MONTAGNINI, F. 2004. The role of native species plantations in recovery of understory woody diversity in degraded pasturelands of Costa Rica. Forest Ecology and Management 188:115.CrossRefGoogle Scholar
DALLING, J. W., LOVELOCK, C. E. & HUBBELL, S.P. 1999. Growth responses of seedlings of two neotropical pioneer species to simulated forest gap environments. Journal of Tropical Ecology 15:827839.CrossRefGoogle Scholar
DENSLOW, J. S. & GUZMAN, G. S. 2000. Variation in stand structure, light and seedling abundance across a tropical moist forest chronosequence, Panama. Journal of Vegetation Science 11:201212.CrossRefGoogle Scholar
DIEMONT, S. A. W., MARTIN, J. F., LEVY-TACHER, S. I., NIGH, R. B., RAMIREZ LOPEZ, P. & GOLICHER, J. D. 2006. Lacandon Maya forest management: restoration of soil fertility using native tree species. Ecological Engineering 28:205212.CrossRefGoogle Scholar
DOUTERLUNGNE, D., LEVY-TACHER, S. I., GOLICHER, J. D. & ROMÁN DAÑOBEYTIA, F. 2010. Applying indigenous knowledge to the restoration of degraded tropical rain forest dominated by bracken. Restoration Ecology 183:322329.Google Scholar
FEARNSIDE, P. M. 1997. Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90:5987.CrossRefGoogle Scholar
FINEGAN, B. 1996. Pattern and process in neotropical secondary rainforests: the first 100 years of succession. Trees 11:119124.Google Scholar
FRANCIS, J. K. 1991. Ochroma pyramidale Cav. Balsa – Bombacaceae. SO. Institute of Tropical Forestry, USDA, SM-41. Río Piedras. 6 pp.Google Scholar
GALINDO-GONZÁLEZ, J., GUEVARA, S. & SOSA, V. J. 2000. Bat- and bird-generated seed rains at isolated trees in pastures in tropical rain forest. Conservation Biology 14:16931703.Google Scholar
GUARIGUATA, M. R., RHEINGANS, R. & MONTAGNINI, F. 1995. Early woody invasion under tree plantation in Costa Rica: implications for forest restoration. Restoration Ecology 3:252260.CrossRefGoogle Scholar
INEGI (Instituto Nacional de Estadística Geografía e Informática). 1988. Las Margaritas (E15-12, D15-3). Carta climática. Esc.: 1:250,000. México DF, México.Google Scholar
LAURANCE, W. F., OLIVEIRA, A. A, LAURANCE, S. G., CONDIT, R., NASCIMENTO, H. E. M., SANCHEZ-THORIN, A. C., LOVEJOY, T. E., ANDRADE, A., D'angelo, S., RIBEIRO, J. E. & DICK, C. W. 2004. Pervasive alteration of tree communities in undisturbed Amazonian forests. Nature 428:171175.CrossRefGoogle ScholarPubMed
LEVY-TACHER, S. I. 2000. Sucesión causada por roza-tumba-quema en las selvas de Lacanhá, Chiapas. Dissertation. Colegio de Posgraduados. Montecillo, Texcoco, Estado de México, México. 165 p.Google Scholar
LEVY-TACHER, S. I. & GOLICHER, J. D. 2004. How predictive is traditional ecological knowledge? The case of the Lacandon Maya fallow enrichment system. Interciencia 29:496503.Google Scholar
LEVY-TACHER, S. I. & AGUIRRE-RIVERA, J. R. 2005. Successional pathways derived from different vegetation use patterns by Lacandon Mayan Indians. Journal of Sustainable Agriculture 26:4982.CrossRefGoogle Scholar
LUGO, A. E. 1997. The apparent paradox of reestablishing species richness on degraded lands with tree monocultures. Forest Ecology and Management 99:919.CrossRefGoogle Scholar
MIRANDA, F. & HERNÁNDEZ X, E. 1963. Los tipos de vegetación de México y su clasificación. Boletin de la Sociedad Botanica de Mexico 28:29179.Google Scholar
Molofsky, J. & Fischer, B. L. 1993. Habitat and predation effects on seedling survival and growth in shade-tolerant tropical trees. Ecology 74:261265.CrossRefGoogle Scholar
Nations, J. & Nigh, R. 1980. The evolutionary potential of Lacandon Maya sustained-yield tropical forest agriculture. Journal of Anthropological Research 36:130.Google Scholar
OTSAMO, R. 2000. Secondary forest regeneration under fast-growing forest plantations on degraded Imperata cylindrica grasslands. New Forests 19:6993.CrossRefGoogle Scholar
PARK, A. & CAMERON, J. L. 2008. The influence of canopy traits on throughfall and stemflow in five tropical trees growing in a Panamanian plantation. Forest Ecology and Management 255:19151925.CrossRefGoogle Scholar
PARROTTA, J. A. 1995. Influence of overstory composition on understory colonization by native species in plantations on a degraded tropical site. Journal of Vegetation Science 6:627636.CrossRefGoogle Scholar
PARROTTA, J. A., KNOWLES, O. & WUNDERLE, J. M. 1997. Floristic diversity development in a 10-year-old restoration forest on a bauxite mined site in Amazonia. Forest Ecology and Management 99:2142.CrossRefGoogle Scholar
PENNINGTON, T.D. & SARUKHÁN, J. 2005. Árboles tropicales de México. (Third edition). Universidad Nacional Autónoma de México y Fondo de Cultura Económica, México, D.F. 534 pp.Google Scholar
POORTER, L. 1999. Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Functional Ecology 13:396410.CrossRefGoogle Scholar
POWERS, J. S., HAGGAR, J. P. & FISHER, R. F. 1997. The effect of overstory composition on understory woody regeneration and species richness in 7-year-old plantations in Costa Rica. Forest Ecology and Management 99:4354.CrossRefGoogle Scholar
ROMÁN-DAÑOBEYTIA, F. J., LEVY-TACHER, S. I., ARONSON, J., RODRIGUES, R. R. & CASTELLANOS-ALBORES, J. 2012. Testing the performance of fourteen native tropical tree species in two abandoned pastures of the Lacandon Rainforest Region of Chiapas, Mexico. Restoration Ecology 20:378386.CrossRefGoogle Scholar
ROSS, M. A. & HARPER, J. L. 1972. Occupation of biological space during seedling establishment. Journal of Ecology 60:7788.CrossRefGoogle Scholar
SALDARRIAGA, J. G., DARREL, C. W., THARP, M. L. & UHL, C. 1988. Long-term chronosequence of forest succession in the upper Rio Negro of Colombia and Venezuela. Journal of Ecology 76:938958.CrossRefGoogle Scholar
SAYER, E. J. 2006. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biological Reviews 81:131.CrossRefGoogle ScholarPubMed
SEIWA, K. & KIKUZAWA, K. 1996. Importance of seed size for the establishment of seedlings in relation to seed size. Canadian Journal of Botany 69:532538.CrossRefGoogle Scholar
SELAYA, N. G., OOMEN, R. J., NETTEN, J. J. C., WERGER, M. J. A. & ANTEN, N. P. R. 2008. Biomass allocation and leaf life span in relation to light interception by tropical forest plants during the first years of secondary succession. Journal of Ecology 96:12111221.CrossRefGoogle Scholar
TAO, D. L., XU, Z. B. & LI, X. 1987. Effect of litter layer on natural regeneration of companion tree species in the Korean pine forest. Environmental and Experimental Botany 27:5365.CrossRefGoogle Scholar
VÁZQUEZ-YANES, C. & OROZCO-SEGOVIA, A. 1992. Effects of litter from a tropical rainforest on tree seed germination and establishment under controlled conditions. Tree Physiology 11:391400.CrossRefGoogle ScholarPubMed
WHITMORE, T. C. 1978. Gaps in the forest canopy. Pp. 639655 in Tomlinson, P. B. & Zimmermann, M. H. (eds.). Tropical trees as living systems. Cambridge University Press, Cambridge.Google Scholar