Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T02:12:15.308Z Has data issue: false hasContentIssue false

Differences in topographic and soil habitat specialization between trees and two understorey plant groups in a Costa Rican lowland rain forest

Published online by Cambridge University Press:  17 August 2016

Mirkka M. Jones*
Affiliation:
Department of Biology, University of Turku, 20014 Turku, Finland Department of Bioscience, Aarhus University, 8000 Aarhus C., Denmark
Kalle Ruokolainen
Affiliation:
Department of Biology, University of Turku, 20014 Turku, Finland
Nelly C. Llerena Martinez
Affiliation:
Department of Biology, University of Turku, 20014 Turku, Finland
Hanna Tuomisto
Affiliation:
Department of Biology, University of Turku, 20014 Turku, Finland
*
1 Corresponding author. Email: mirkka.jones@gmail.com

Abstract:

Two core questions in plant community ecology are to what extent the distributions of species are structured by local environmental conditions, and whether taxa differ in this regard. We compared the distributions of trees, Melastomataceae and ferns on soil and topographic gradients in a Costa Rican lowland rain forest (trees and ferns 983 plots, Melastomataceae 277 plots). To test whether these plant groups differed in the prevalence or type of habitat specialization, we calculated species’ environmental optima and tolerances on each gradient. Habitat specialization was defined as a significantly biased optimum, or a narrow tolerance, relative to values obtained under spatially restricted randomizations of species occurrences. Within plant groups, we also asked whether the dispersion of species optima differed from random expectation on each gradient. Fern optima were over-dispersed on multiple gradients, implying considerable interspecific habitat partitioning, and tree optima were over-dispersed in relation to topographic position. Habitat specialization was more prevalent in the two predominantly understorey groups than in trees (75% of Melastomataceae species, 81–87% of ferns, 57–58% of trees). Species optima of Melastomataceae and ferns also tended towards lower landscape positions than did those of trees, perhaps reflecting a higher proportion of drought-sensitive species in these two groups.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BECKER, P. & CASTILLO, A. 1990. Root architecture of shrubs and saplings in the understory of a tropical moist forest in lowland Panama. Biotropica 22:242249.CrossRefGoogle Scholar
CHUYONG, G. B., KENFACK, D., HARMS, K. E., THOMAS, D. W., CONDIT, R. & COMITA, L. S. 2011. Habitat specificity and diversity of tree species in an African wet tropical forest. Plant Ecology 212:13631374.CrossRefGoogle Scholar
CLARK, D. B. & CLARK, D. A. 2000. Landscape-scale variation in forest structure and biomass in a tropical rain forest. Forest Ecology and Management 137:185198.CrossRefGoogle Scholar
CLARK, D. B., CLARK, D. A., RICH, P. M., WEISS, S. & OBERBAUER, S. F. 1996. Landscape-scale evaluation of understorey light and canopy structures: methods and application in a neotropical lowland rain forest. Canadian Journal of Forest Research 26:747757.CrossRefGoogle Scholar
CLARK, D. B., CLARK, D. A. & READ, J. M. 1998. Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. Journal of Ecology 86:101112.CrossRefGoogle Scholar
CLARK, D. B., PALMER, M. W. & CLARK, D. A. 1999. Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology 80:26622675.CrossRefGoogle Scholar
COMITA, L. S., ENGELBRECHT, B. M. J. 2009. Seasonal and spatial variation in water availability drive habitat associations in a tropical forest. Ecology 90:27552765.CrossRefGoogle Scholar
COMITA, L. S. & ENGELBRECHT, B. M. J. 2014. Drought as a driver of tropical tree species regeneration dynamics and distribution patterns. Pp. 261308 in Coomes, D. A., Burslem, D. F. R. P. & Simonson, W. D. (eds.). Forests and global change. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
COMITA, L. S., CONDIT, R. & HUBBELL, S. P. 2007. Developmental changes in habitat associations of tropical trees. Journal of Ecology 95:482492.CrossRefGoogle Scholar
COSTA, F. R. C. 2006. Mesoscale gradients of herb richness and abundance in central Amazonia. Biotropica 38:711717.CrossRefGoogle Scholar
DE KNEGT, H. J., VAN LANGEVELDE, F., COUGHENOUR, M. B., SKIDMORE, A. K., DE BOER, W. F., HEITKÖNIG, I. M. A., KNOX, N. M., SLOTOW, R., VAN DE WAAL, C. & PRINS, H. H. T. 2010. Spatial autocorrelation and the scaling of species-environment relationships. Ecology 91:24552465.CrossRefGoogle ScholarPubMed
FEDOROV, A. A. 1966. The structure of the tropical rain forest and speciation in the humid tropics. Journal of Ecology 54:111.CrossRefGoogle Scholar
GENTRY, A. H. & DODSON, C. 1987. Contribution of nontrees to species richness of a tropical rain forest. Biotropica 19:149156.CrossRefGoogle Scholar
GRAINGER, J. & BECKER, P. 2001. Root architecture and root:shoot allocation of shrubs and saplings in a Bruneian heath forest. Biotropica 33:363368.CrossRefGoogle Scholar
GUNATILLEKE, C. V. S., GUNATILLEKE, I. A. U. N., ESUFALI, S., HARMS, K., ASHTON, P. M. S., BURSLEM, D. F. R. P. & ASHTON, P. S. 2006. Species-habitat associations in a Sri Lankan dipterocarp forest. Journal of Tropical Ecology 22:371384.CrossRefGoogle Scholar
HARMS, K. E., CONDIT, R., HUBBELL, S. P. & FOSTER, R. B. 2001. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology 89:947959.CrossRefGoogle Scholar
HARTSHORN, G. R. & HAMMEL, B. E. 1994. Vegetation types and floristic patterns. Pp. 7289 in McDade, L. A., Bawa, K., Hespenheide, H. & Hartshorn, G. (eds.). La Selva: ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago.Google Scholar
HUBBELL, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton. 375 pp.Google Scholar
IPCC. 2014. Climate change 2014: Impacts adaptation and vulnerability Contribution of working group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. 1820 pp.Google Scholar
JOHN, R., DALLING, J. W., HARMS, K. E., YAVITT, J. B., STALLARD, R. F., MIRABELLO, M., HUBBELL, S. P., VALENCIA, R., NAVARRETE, H., VALLEJO, M. & FOSTER, R. B. 2007. Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences USA 104:864869.CrossRefGoogle ScholarPubMed
JONES, M. M., TUOMISTO, H. & OLIVAS, P. C. 2008. Differences in the degree of environmental control on large and small tropical plants: just a sampling effect? Journal of Ecology 96:367377.CrossRefGoogle Scholar
JONES, M. M., CICUZZA, D., VAN STRAATEN, O., VELDKAMP, E. & KESSLER, M. 2014. Determinants of fern and angiosperm herb community structure in lower montane rainforest in Indonesia. Journal of Vegetation Science 25:12161224.CrossRefGoogle Scholar
LANDIM, M. F., PROENÇA, C. E. B., SALES, A. B. & MATOS, I. S. 2015. Floristic characterization of an Atlantic rainforest remnant in southern Sergipe: Crasto forest. Biota Neotropica 15:e20130036.CrossRefGoogle Scholar
LINARES-PALOMINO, R., CARDONA, V., HENNIG, E., HENSEN, I., HOFFMANN, D., LENDZION, J., SOTO, D., HERZOG, S. K. & KESSLER, M. 2009. Non-woody life-form contribution to vascular plant species richness in a tropical American forest. Plant Ecology 201:8799.CrossRefGoogle Scholar
METCALFE, D. J. & GRUBB, P. J. 1995. Seed mass and light requirements for regeneration in Southeast Asian rain forest. Canadian Journal of Botany 73:817826.CrossRefGoogle Scholar
METCALFE, D. J., GRUBB, P. J. & TURNER, I. M. 1998. The ecology of very small-seeded shade-tolerant trees and shrubs in lowland rain forest in Singapore. Plant Ecology 134:131149.CrossRefGoogle Scholar
METZ, M. 2012. Does habitat specialisation by seedlings contribute to the high diversity of a lowland rain forest? Journal of Ecology 100:969979.CrossRefGoogle Scholar
MOLOFSKY, J. & AUGSPURGER, C. K. 1992. The effect of leaf litter on early seedling establishment in a tropical forest. Ecology 73:6877.CrossRefGoogle Scholar
MURPHY, S. J., SALPETER, K. & COMITA, L. S. 2016. Higher ß-diversity observed for herbs over woody plants is driven by stronger habitat filtering in a tropical understory. Ecology 97:20742084.CrossRefGoogle Scholar
PALMER, M. W., CLARK, D. B. & CLARK, D. A. 2000. Is the number of tree species in small tropical forest plots non-random? Community Ecology 1:95101.CrossRefGoogle Scholar
POULSEN, A. D., TUOMISTO, H. & BALSLEV, H. 2006. Edaphic and floristic variation within a 1-ha plot of lowland Amazonian rain forest. Biotropica 38:468478.CrossRefGoogle Scholar
RODRIGUES, F. R. DE O. & COSTA, F. R. C. 2012. Litter as a filter of emergence for herbaceous seedlings and sporophytes in central Amazonia. Journal of Tropical Ecology 28:445452.CrossRefGoogle Scholar
SANFORD, R. L., PAABY, P., LUVALL, J. C. & PHILLIPS, E. 1994. Climate, geomorphology, and aquatic systems. Pp. 1933 in McDade, L. A., Bawa, K., Hespenheide, H. & Hartshorn, G. (eds.). La Selva: ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago.Google Scholar
SCHAFFERS, A. P. & SÝKORA, K. V. 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. Journal of Vegetation Science 11:225244.CrossRefGoogle Scholar
SILVERTOWN, J., ARAYA, Y. & GOWING, D. 2015. Hydrological niches in terrestrial plant communities: a review. Journal of Ecology 103:93108.CrossRefGoogle Scholar
TUOMISTO, H. & RUOKOLAINEN, K. 2005. Environmental heterogeneity and the diversity of pteridophytes and Melastomataceae in western Amazonia. Biologiske Skrifter 55:3756.Google Scholar
TUOMISTO, H., RUOKOLAINEN, K., POULSEN, A.D., MORAN, R.C., QUINTANA, C., CAÑAS, G. & CELI, J. 2002. Distribution and diversity of pteridophytes and Melastomataceae along edaphic gradients in Yasuní national park, Ecuadorian Amazonia. Biotropica 34:516533.CrossRefGoogle Scholar
TUOMISTO, H., ZUQUIM, G. & CÁRDENAS, G. 2014. Species richness and diversity along edaphic and climatic gradients in Amazonia. Ecography 37:10341046.CrossRefGoogle Scholar
WEBB, C. O. & PEART, D. R. 2000. Habitat associations of trees and seedlings in a Bornean rain forest. Journal of Ecology 86:464478.CrossRefGoogle Scholar
WRIGHT, S. J. 1992. Seasonal drought, soil fertility and the species density of tropical forest plant communities. Trends in Ecology and Evolution 7:260263.CrossRefGoogle ScholarPubMed
ZAGT, R. J. & WERGER, M. J. A. 1998. Community structure and the demography of primary species in tropical rainforest. Pp. 193219 in Newbery, D. M., Prins, H. H. T. & Brown, N. D. (eds.). Dynamics of tropical communities. Blackwell, Oxford.Google Scholar