Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T08:21:07.941Z Has data issue: false hasContentIssue false

Effects of seasonality and habitat on the browsing and frugivory preferences of Tapirus terrestris in north-western Amazonia

Published online by Cambridge University Press:  16 November 2017

Juliana Vélez*
Affiliation:
Grupo de Ecología del Paisaje y Modelación de Ecosistemas ECOLMOD, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá, Colombia
Josep Maria Espelta
Affiliation:
CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain
Orlando Rivera
Affiliation:
Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá, Colombia
Dolors Armenteras
Affiliation:
Grupo de Ecología del Paisaje y Modelación de Ecosistemas ECOLMOD, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá, Colombia
*
*Corresponding author. Email: julianavelezgomez@gmail.com

Abstract:

Herbivore foraging is influenced by spatial and seasonal changes in the production of leaves and fruits. To understand how herbivores respond to these changes, it is necessary to identify their habitat preferences and how they use the vegetation available. In the Neotropical region, one of the largest terrestrial herbivores is the lowland tapir (Tapirus terrestris), a species important for its dual role as browser and seed disperser. The objective of this study was to determine the species and plant components (leaves, fruits) utilized by T. terrestris in different time periods and habitats, in relation to changes in food availability in the north-western Amazon. Tapir diet was established through identification of browsing signs and faecal analysis, from data collected in the field during the months of March, April, August and September of 2015. Plant species availability for browsing was sampled in ten 2 × 50-m transects and fruit productivity was estimated in linear transects (~9 km). We found that T. terrestris mostly consumed vegetative parts, i.e. fibre (70–90%), and to a lesser extent fruits (10–30%). Food consumption was selective and concentrated in habitats with higher availability of preferred plants. When fruit intake increased, selectivity in browsing became more intense and limited to preferred species. This information, coupled with our findings about seasonal differences in browsing vs. frugivory patterns, provides valuable knowledge for understanding how environmental heterogeneity may influence the foraging ecology of the lowland tapir.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ARIAS, A. 2008. Aportes a la historia natural de la danta colombiana (Tapirus terrestris colombianus) compilados en el norte de los Andes Centrales Colombianos. Tapir Conservation – The Newsletter of the IUCN/SSC Tapir Specialist Group 17:1421.Google Scholar
BARCELOS, A. R., BOBROWIEC, P. E., SANAIOTTI, T. M. & GRIBEL, R. 2013. Seed germination from lowland tapir (Tapirus terrestris) fecal samples collected during the dry season in the Northern Brazilian Amazon. Integrative Zoology 8:6373.CrossRefGoogle ScholarPubMed
BELLO, C., GALETTI, M., PIZO, M. A., MAGNAGO, L. F. S., ROCHA, M. F., LIMA, R. A. F., PERES, C. A., OVASKAINEN, O. & JORDANO, P. 2015. Defaunation affects carbon storage in tropical forests. Science Advances 1:e1501105.CrossRefGoogle ScholarPubMed
BODMER, R. E. 1990. Fruit patch size and frugivory in the lowland tapir (Tapirus terrestris). Journal of Zoology 222:121128.Google Scholar
CASTAÑO, N., CÁRDENAS, D. & OTAVO, E. 2007. Mauritia fleuxosa, Canangucha. in Castaño, N., Cárdenas, D. & Otavo, E. (eds). Ecología, aprovechamiento y manejo sostenible de nueve especies de plantas del departamento del Amazonas, generadoras de productos maderables y no maderables. Instituto Amazónico de Investigaciones Científicas – Sinchi. Corporación para el Desarrollo Sostenible del Sur de la Amazonia, CORPOAMAZONIA, Bogotá.Google Scholar
CHALUKIAN, S. C., DE BUSTOS, M. S. & LIZÁRRAGA, R. L. 2013. Diet of lowland tapir (Tapirus terrestris) in El Rey National Park, Salta, Argentina. Integrative Zoology 8:4856.Google Scholar
CHAPMAN, C. A., CHAPMAN, L. J., WANGHAM, R., HUNT, K., GEBO, D. & GARDNER, L. 1992. Estimators of fruit abundance of tropical trees. Biotropica 24:527531.CrossRefGoogle Scholar
CHAPMAN, C. A., CHAPMAN, L. J., STRUHSAKER, T. T., ZANNE, A. E., CLARK, C. J. & POULSEN, J. R. 2005. A long-term evaluation of fruiting phenology: importance of climate change. Journal of Tropical Ecology 21:3145.CrossRefGoogle Scholar
DOWNER, C. C. 2001. Observations on the diet and habitat of the mountain tapir (Tapirus pinchaque). Journal of Zoology 254:279291.CrossRefGoogle Scholar
DUIVENVOORDEN, J. F. 1996. Patterns of tree species richness in rain forests of the Middle Caqueta area, Colombia, NW Amazonia. Biotropica 28:142158.Google Scholar
DUIVENVOORDEN, J. F. & LIPS, J. M. 1993. Ecologia del paisaje del Medio Caquetá. Estudios en la Amazonia Colombiana. Programa Tropenbos-Colombia, Bogotá. 301 pp.Google Scholar
DUIVENVOORDEN, J. F. & LIPS, J. M. 1995. A land-ecological study of soils, vegetation, and plant diversity in Colombian Amazonia. The Tropenbos Foundation, Wageningen. 438 pp.Google Scholar
FLEMING, T. H., BREITWISCH, R. & WHITESIDES, G. H. 1987. Patterns of tropical vertebrate frugivore diversity. Annual Review of Ecology and Systematics 18:91109.CrossRefGoogle Scholar
FOERSTER, C. R. & VAUGHAN, C. 2002. Home range, habitat use, and activity of baird's tapir in Costa Rica. Biotropica 34:423437.Google Scholar
FORTIN, D., FRYXELL, J. M., O'BRODOVICH, L. & FRANDSEN, D. 2003. Foraging ecology of bison at the landscape and plant community levels: the applicability of energy maximization principles. Oecologia 134:219227.CrossRefGoogle ScholarPubMed
FRAGOSO, J. M. V. 1991. The effect of selective logging on baird's tapir. Pp. 295–304 in Mares, M. A. & Schmidly, D. J. (eds). Latin American mammalogy: history, biodiversity, and conservation. University of Oklahoma Press, Norman.Google Scholar
FRAGOSO, J. M. V. 1997. Tapir-generated seed shadows: scale-dependent patchiness in the Amazon rain forest. Journal of Ecology 85:519529.CrossRefGoogle Scholar
FRAGOSO, J. M. V. & HUFFMAN, J. M. 2000. Seed-dispersal and seedling recruitment patterns by the last Neotropical megafaunal element in Amazonia, the tapir. Journal of Tropical Ecology 16:369385.CrossRefGoogle Scholar
FRAGOSO, J. M. V., SILVIUS, K. M. & CORREA, J. A. 2003. Long-distance seed dispersal by tapirs increases seed survival and aggregates tropical trees. Ecology 84:19982006.CrossRefGoogle Scholar
GALEANO, G. & BERNAL, R. 2010. Palmas de Colombia. Guía de campo. Editorial Universidad Nacional de Colombia, Instituto de Ciencias Naturales – Universidad Nacional de Colombia, Bogotá. 688 pp.Google Scholar
GENTRY, A. H. 1982. Patterns of Neotropical plant diversity. Evolutionary Biology 15:184.Google Scholar
GENTRY, A. H. 1993. A field guide to the families and genera of woody plants of northwest South America (Colombia, Ecuador, Peru) with supplementary notes on herbaceous taxa. The University of Chicago Press, Chicago. 895 pp.Google Scholar
GONZÁLEZ, T. M., GONZÁLEZ, J. D., PINO, J., PALMER, J. & ARMENTERAS, D. in press. Movement behavior of a tropical mammal: the case of Tapirus terrestris. Ecological Modelling.Google Scholar
HIBERT, F., SABATIER, D., ANDRIVOT, J., SCOTTI-SAINTAGNE, C., GONZALEZ, S., PRÉVOST, M. F., GRENAND, P., CHAVE, J., CARON, H. & RICHARD-HANSEN, C. 2011. Botany, genetics and ethnobotany: a crossed investigation on the elusive tapir's diet in French Guiana. PLoS ONE 6:e25850.Google Scholar
HIBERT, F., TABERLET, P., CHAVE, J., SCOTTI-SAINTAGNE, C., SABATIER, D. & RICHARD-HANSEN, C. 2013. Unveiling the diet of elusive rainforest herbivores in next generation sequencing era? The tapir as a case study. PLoS ONE 8:e60799.Google Scholar
HOLDRIDGE, L. R., GRENKE, W. C., HATHEWAY, W. H., LIANG, T. & TOSI, J. A. 1971. Forest environments in tropical life zones: a pilot study. Pergamon Press, Oxford. 747 pp.Google Scholar
JACOBS, J. 1974. Quantitative measurement of food selection. Oecologia 14:413417.Google Scholar
LIZCANO, D. J. & CAVELIER, J. 2004. Características químicas de salados y hábitos alimenticios de la danta de montaña (Tapirus pinchaque Roulin, 1829) en los Andes Centrales de Colombia. Mastozoología Neotropical 11:193201.Google Scholar
LONDOÑO, A. C. & ÁLVAREZ, E. 1997. Composición florística de dos bosques (tierra Firme y várzea) en la región de Araracuara, Amazonía Colombiana. Caldasia 19:431463.Google Scholar
MANLY, B. F. J., MCDONALD, L. L., THOMAS, D. L., MCDONALD, T. L. & ERICKSON, W. P. 2002. Resource selection by animals. Statistical design and analysis for field studies. Second edition. Kluwer Academic Publishers, Dordrecht. 221 pp.Google Scholar
MEDICI, E. P. 2010. Assessing the viability of lowland tapir populations in a fragmented landscape. PhD thesis, University of Kent, Canterbury.Google Scholar
MONTENEGRO, O. L. 2004. Natural licks as keystone resources for wildlife and people in Amazonia. PhD thesis. University of Florida, Gainsville, Florida.Google Scholar
PARRADO, A. 2005. Fruit availability and seed dispersal in terra firme rain forest of Colombian Amazonia. PhD thesis. University of Amsterdam, Wageningen.Google Scholar
PHILLIPS, E. A. 1959. Methods of vegetation study. Henry Holt & Co., New York. 107 pp.Google Scholar
PIANKA, E. R. 2008. Optimal foraging. Pp. 25592561 in Jorgensen, S. E. & Fath, B. D. (eds). Encyclopedia of ecology. Elsevier B.V., Oxford.CrossRefGoogle Scholar
PYKE, G. H., PULLIAM, H. R. & CHARNOV, E. L. 1977. Optimal foraging: a selective review of theory and tests. Quarterly Review of Biology 52:137154.CrossRefGoogle Scholar
RICKLEFS, R. E. 1977. Environmental heterogeneity and plant species diversity: a hypothesis. American Naturalist 111:376381.Google Scholar
SALAS, L. A. 1996. Habitat use by lowland tapirs (Tapirus terrestris L.) in the Tabaro River valley, southern Venezuela. Canadian Journal of Zoology 74:14521458.CrossRefGoogle Scholar
SALAS, L. A. & FULLER, T. K. 1996. Diet of the lowland tapir (Tapirus terrestris L.) in the Tabaro River valley, southern Venezuela. Canadian Journal of Zoology 74:14441451.CrossRefGoogle Scholar
SOLANO, C., VARGAS, N. & PEÑA, J. 1996. Aspectos de la historia natural del tapir de tierras bajas Tapirus terrestris (Linnaeus, 1758) en un sector del Río Duda, Parque Nacional Natural Tinigua, Meta. Corporación Hylea, Bogotá. 58 pp.Google Scholar
STEVENSON, P. R. 2004a. Fruit choice by woolly monkeys in Tinigua National Park, Colombia. International Journal of Primatology 25:367381.CrossRefGoogle Scholar
STEVENSON, P. R. 2004b. Phenological patterns of woody vegetation at Tinigua Park, Colombia: methodological comparisons with emphasis on fruit production. Caldasia 26:125150.Google Scholar
STEVENSON, P. R. 2017. Botanical sampling. Pp. 125128 in Fuentes, A. (eds). The international encyclopedia of primatology. John Wiley & Sons, Chichester.Google Scholar
STEYERMARK, J. A., BERRY, P. E., YATSKIEVYCH, K. & HOLST, B. K. 1995. Flora of the Venezuelan Guayana. Missouri Botanical Garden Press, St. Louis.Google Scholar
TANENTZAP, A. J., BEE, J. N., LEE, W. G., LAVERS, R. B., MILLS, J. A., MARK, A. F. & COOMES, D. A. 2009. The reliability of palatability estimates obtained from rumen contents analysis and a field-based index of diet selection. Journal of Zoology 278:243248.Google Scholar
TERWILLIGER, V. J. 1978. Natural history of baird's tapir on Barro Colorado Island, Panama Canal Zone. Biotropica 10:211220.CrossRefGoogle Scholar
TOBLER, M. W., NARANJO, E. J. & LIRA-TORRES, I. 2006. Habitat preference, feeding habits and conservation of Baird's tapir in Neotropical montane oak forests. Pp. 347361 in Kappelle, M. (ed.). Ecology and conservation of Neotropical montane oak forests. Springer-Verlag, Germany.Google Scholar
TOBLER, M. W., CARRILLO-PERCASTEGUI, S. E. & POWELL, G. 2009. Habitat use, activity patterns and use of mineral licks by five species of ungulate in south-eastern Peru. Journal of Tropical Ecology 25:261270.Google Scholar
TOBLER, M. W., JANOVEC, J. P. & CORNEJO, F. 2010. Frugivory and seed dispersal by the lowland tapir Tapirus terrestris in the Peruvian Amazon. Biotropica 42:215222.Google Scholar
VAN SCHAIK, C. P., TERBORGH, J. W. & WRIGHT, S. J. 1993. The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annual Review of Ecology, Evolution, and Systematics 24:353377.CrossRefGoogle Scholar
VILLARREAL, H., ÁLVAREZ, M., CÓRDOBA, S., ESCOBAR, F., FAGUA, G., GAST, F., MENDOZA, H., OSPINA, M. & UMAÑA, A. M. 2004. Manual de métodos para el desarrollo de inventarios de biodiversidad. Programa de inventarios de biodiversidad. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá. 236 pp.Google Scholar