Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T16:44:06.951Z Has data issue: false hasContentIssue false

Host preference and host limitation of vascular epiphytes in a tropical dry forest of central Mexico

Published online by Cambridge University Press:  11 October 2010

Carmen Agglael Vergara-Torres
Affiliation:
Centro de Investigación en Biodiversidad y Conservación (CIByC). Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, México
Mary Carmen Pacheco-Álvarez
Affiliation:
Centro de Investigación en Biodiversidad y Conservación (CIByC). Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, México
Alejandro Flores-Palacios*
Affiliation:
Centro de Investigación en Biodiversidad y Conservación (CIByC). Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, México
*
2Corresponding author. Email: alejandro.florez@uaem.mx

Abstract:

It has been suggested that vascular epiphyte composition and abundance may be influenced by forest host composition. We studied the epiphyte species distribution among host species of a tropical dry forest in Mexico. All the epiphyte stands supported by woody plants (dbh > 3 cm) of ten forest plots (0.1 ha each) were counted. We measured the dbh of all the hosts, noted their bark characteristics (texture and peeling behaviour), and measured the bark thickness of the most abundant host species. Epiphyte distribution was biased toward a high concentration of epiphytes in three host species and a lower abundance of epiphytes on five host species. This was consistent among epiphyte taxa and host species, allowing us to classify hosts as preferred (with more epiphyte stands than expected by chance) and limiting species (with fewer epiphyte stands than expected by chance), at a community level. Host quality did not relate to mean phorophyte size (measured as basal area) or to bark characteristics (peeling behaviour, thickness and texture) between species. For some epiphyte taxa, the observed distribution indicated that the forest contained preferred and limiting host species mainly. Our data suggest that the epiphyte species in the forest studied could be host limited. We concluded that neither host size nor obvious bark characteristics can be used to predict epiphyte distribution and that further research is necessary.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

BENAVIDES, A. M., DUQUE, A. J., DUIVENVOORDEN, J. F., VASCO, G. A. & CALLEJAS, R. 2005. A first quantitative census of vascular epiphytes in rain forest of Colombian Amazonia. Biodiversity and Conservation 14:739758.CrossRefGoogle Scholar
BENNETT, B. C. 1987. Spatial distribution of Catopsis and Guzmania (Bromeliaceae) in Southern Florida. Bulletin of the Torrey Botanical Club 114:265271.CrossRefGoogle Scholar
BENZING, D. H. 1990. Vascular epiphytes. Cambridge University Press, Cambridge. 354 pp.CrossRefGoogle Scholar
BERNAL, R., VALVERDE, T. & HERNÁNDEZ-ROSAS, L. 2005. Habitat preference of the epiphyte Tillandsia recurvata (Bromeliaceae) in a semi-desert environment in Central Mexico. Canadian Journal of Botany 83:12381247.CrossRefGoogle Scholar
CASTRO-HERNÁNDEZ, J. C., WOLF, J. H. D., GARCÍA-FRANCO, J. G. & GONZÁLEZ-ESPINOSA, M. 1999. The influence of humidity, nutrients and light on the establishment of the epiphytic bromeliad Tillandsia guatemalensis in the highlands of Chiapas, Mexico. Revista de Biología Tropical 47:763773.Google Scholar
CLAVER, F. K., ALANIZ, J. R. & CALDIZ, D. O. 1983. Tillandsia spp.: epiphytic weeds of trees and bushes. Forest Ecology and Management 6:367372.CrossRefGoogle Scholar
ESPEJO-SERNA, A., GARCIA CRUZ, J., LÓPEZ-FERRARI, A. R., JIMENEZ MACHORRO, R. & SÁNCHEZ SALDAÑA, L. 2002. Orquídeas del Estado de Morelos. Orquídea 16:1332.Google Scholar
ESPEJO-SERNA, A., LÓPEZ-FERRARI, A. R., RAMIREZ-MORILLO, I., HOLST, B. K., LUTHER, H. E. & HILL, W. 2004. Checklist of Mexican Bromeliaceae with notes on species distribution and leaves of endemism. Selbyana 25:3386.Google Scholar
FLORES-PALACIOS, A. & GARCÍA-FRANCO, J. G. 2006. The relationship between tree size and epiphyte richness: testing four different hypotheses. Journal of Biogeography 33:323330.CrossRefGoogle Scholar
FLORES-PALACIOS, A. & GARCÍA-FRANCO, J. G. 2008. Habitat isolation changes the beta diversity of the vascular epiphyte community in lower montane forest, Veracruz, Mexico. Biodiversity and Conservation 17:191207.CrossRefGoogle Scholar
GENTRY, A. H. & DODSON, C. H. 1987. Diversity and biogeography of neotropical vascular epiphytes. Annals of the Missouri Botanical Garden 74:205233.CrossRefGoogle Scholar
HABERMAN, S. J. 1973. The analysis of residual in cross-classified tables. Biometrics 29:205220.CrossRefGoogle Scholar
JEPSON, J. 1998. The tree climber's companion. J. Jepson, Longville. 104 pp.Google Scholar
LAUBE, S. & ZOTZ, G. 2006. Neither host-specific nor random: vascular epiphytes on three tree species in a Panamanian lowland forest. Annals of Botany 97:11031114.CrossRefGoogle Scholar
LÓPEZ-VILLALOBOS, A., FLORES-PALACIOS, A. & ORTIZ-PULIDO, R. 2008. The relationship between bark peeling rate and the distribution and mortality of two epiphyte species. Plant Ecology 198:265274.CrossRefGoogle Scholar
MARTÍNEZ-MELÉNDEZ, N., PÉREZ-FARRERA, M. A. & FLORES-PALACIOS, A. 2008. Estratificación vertical y preferencia de hospedero de las epífitas vasculares de un bosque nublado de Chiapas, México. Revista de Biología Tropical 56:20692086.Google Scholar
MORENO, N. P. 1987. Glosario botánico ilustrado. Instituto Nacional de Investigación sobre Recursos Bióticos. Xalapa. 300 pp.Google Scholar
PENNINGTON, T. D. & SARUKHÁN, J. 1998. Árboles tropicales de México. Manual para la identificación de las principales especies. Instituto de Ecología, D. F.521 pp.Google Scholar
RIBA, R., PACHECO, L., VALDÉS, A. & SANDOVAL, Y. 1996. Pteridoflora del Estado de Morelos, México, lista de familias, géneros y especies. Acta Botánica Mexicana 37:4565.CrossRefGoogle Scholar
SANFORD, W. W. 1968. Distribution of epiphytic orchids in semideciduous tropical forest in southern Nigeria. Journal of Ecology 56:697705.CrossRefGoogle Scholar
SIEGEL, S. & CASTELLAN, N. J. 2005. Estadística no paramétrica aplicada a las ciencias de la conducta. Trillas. D. F.437 pp.Google Scholar
SMITH, L. B. & DOWNS, R. J. 1977. Tillandsioideae (Bromeliaceae). Flora Neotropica 14:6631492.Google Scholar
TER STEEGE, H. & CORNELISSEN, J. H. C. 1989. Distribution and ecology of vascular epiphytes in Lowland rain forest of Guyana. Biotropica 21:331339.CrossRefGoogle Scholar
TREMBLAY, R. L., ZIMMERMAN, J. K., LEBRÓN, L., BAYMAN, P., SASTRE, I., AXELROD, F. & ALERS-GARCÍA, J. 1998. Host specificity and low reproductive success in the rare endemic Puerto Rican orchid Lepanthes caritensis. Biological Conservation 85:297304.CrossRefGoogle Scholar
VALENCIA-DÍAZ, S., FLORES-PALACIOS, A., RODRÍGUEZ-LÓPEZ, V., VENTURA-ZAPATA, E. & JIMÉNEZ-APARICIO, A. R. 2010. Effect of host-bark extracts on seed germination in Tillandsia recurvata, an epiphytic bromeliad. Journal of Tropical Ecology.CrossRefGoogle Scholar
WOLF, J. H. D. & FLAMENCO, A. 2003. Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico. Journal of Biogeography 30:16891707.CrossRefGoogle Scholar
ZIMMERMAN, J. K. & OLMSTED, I. C. 1992. Host tree utilization by vascular epiphytes in a seasonally inundated forest (Tintal) in Mexico. Biotropica 24:402407.CrossRefGoogle Scholar