Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T19:45:10.278Z Has data issue: false hasContentIssue false

Rainfall and temperature affect tree species distribution in Ghana

Published online by Cambridge University Press:  26 June 2014

Lucy Amissah*
Affiliation:
Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands CSIR-Forestry Research Institute of Ghana, P.O. Box UP63, KNUST, Kumasi, Ghana
Godefridus M. J. Mohren
Affiliation:
Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
Frans Bongers
Affiliation:
Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
William D. Hawthorne
Affiliation:
Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
Lourens Poorter
Affiliation:
Forest Ecology and Forest Management Group, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, the Netherlands
*
1Corresponding author. Email: lucy.amissah@wur.nl

Abstract:

We evaluated the relative importance of annual rainfall, temperature and their seasonality to tree species distribution in Ghana. We used species presence/absence data from 2505 1-ha plots systematically distributed over Ghana's forests. Logistic regression was used to determine species responses to four climatic variables generated from the Worldclim database. The distribution of 95% of 20 species was significantly associated with annual rainfall, 60% with rainfall seasonality, 45% with isothermality and 40% with temperature seasonality. Annual rainfall explained on average most of the variation (17%, range = 0.5–52%) in species distribution, followed by rainfall seasonality 5% (range = 0.5–27%), isothermality 4% (range = 0.8–24%) and temperature seasonality 1% (range = 0.4–4.5%). Our results suggest that, out of the climatic variables investigated, rainfall is the main factor determining tree species distribution in Ghana; temperature also influences the distribution of a number of species, although it explains much less of the variation. The reduction in annual rainfall that prevailing climate-change scenarios predict for the region will result in a shift in the distribution of most species, whereas the predicted increase in temperature variation is likely to have little effect.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

AUSTIN, M. P. & GAYWOOD, M. J. 1994. Current problems of environmental gradients and species response curves in relation to continuum theory. Journal of Vegetation Science 5:473482.Google Scholar
AUSTIN, M. P. & SMITH, T. M. 1989. A new model for the continuum concept. Vegetatio 83:3547.Google Scholar
BALTZER, J. L., DAVIES, S. J., BUNYAVEJCHEWIN, S. & NOOR, N. 2008. The role of desiccation tolerance in determining tree species distributions along the Malay–Thai Peninsula. Functional Ecology 22:221231.Google Scholar
BONGERS, F., POORTER, L., VAN ROMPAEY, R. S. A. R. & PARREN, M. P. E. 1999. Distribution of twelve moist forest canopy tree species in Liberia and Côte d’Ivoire: response curve to a climate gradient. Journal of Vegetation Science 10:371382.Google Scholar
BORCHERT, R. 1998. Responses of tropical trees to rainfall seasonality and its long-term changes. Climatic Change 39:381393.Google Scholar
BRANDO, P. M., NEPSTAD, D. C., DAVIDSON, E. A., TRUMBORE, S. E., RAY, D. & CAMARGO, P. 2008. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philosophical Transactions of the Royal Society B: Biological Sciences 363:18391848.CrossRefGoogle Scholar
BRENES-ARGUEDAS, T., RÍOS, M., RIVAS-TORRES, G., BLUNDO, C., COLEY, P. D. & KURSAR, T. A. 2008. The effect of soil on the growth performance of tropical species with contrasting distributions. Oikos 117:14531460.CrossRefGoogle Scholar
BRENES-ARGUEDAS, T., COLEY, P. D. & KURSAR, T. A. 2009. Pests vs. drought as determinants of plant distribution along a tropical rainfall gradient. Ecology 90:17511761.Google Scholar
CHRISTENSEN, J. H., HEWITSON, B., BUSUIOC, A., CHEN, A., GAO, X., HELD, I., JONES, R., KOLLI, R. K., KWON, W.T., LAPRISE, R., MAGAÑA RUEDA, V., MEARNS, L., MENÉNDEZ, C. G., RÄISÄNEN, J., RINKE, A., SARR, A. & WHETTON, P. 2007. Regional climate projections. Pp. 848940 in Soloman, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Miller, H. L (eds.). Climate change: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
CLARK, D. A., PIPER, S. C., KEELING, C. D. & CLARK, D. B. 2003. Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. Proceedings of the National Academy of Sciences USA 10:5852–5857.CrossRefGoogle Scholar
CLARK, D. B., CLARK, D. A. & OBERBAUER, S. F. 2010. Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Global Change Biology 16:747759.CrossRefGoogle Scholar
CONDIT, R., ENGELBRECHT, B. M., PINO, D., PÉREZ, R. & TURNER, B. L. 2013. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proceedings of the National Academy of Sciences USA 110:5064–5068.Google Scholar
DEINES, J. M., HELLMANN, J. J. & CURRAN, T. J. 2011. Traits associated with drought survival in three Australian tropical rainforest seedlings. Australian Journal of Botany 59:621629.Google Scholar
DOUGHTY, C. E. & GOULDEN, M. L. 2008. Are tropical forests near a high temperature threshold? Journal of Geophysical Research 113, G00B07. doi: 10.1029/2007JG000632.CrossRefGoogle Scholar
DUNCAN, R. P., CASSEY, P. & BLACKBURN, T. M. 2009. Do climate envelope models transfer? A manipulative test using dung beetle introductions. Proceedings of the Royal Society B: Biological Sciences 267:1449–1457.CrossRefGoogle Scholar
DUQUE, A. J. 2004. Plant diversity scaled by growth forms along spatial and environmental gradients. PhD thesis, University of Amsterdam, the Netherlands.Google Scholar
ENGELBRECHT, B. M., COMITA, L. S., CONDIT, R., KURSAR, T. A., TYREE, M. T., TURNER, B. L. & HUBBELL, S. P. 2007. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:8082.Google Scholar
FAUSET, S., BAKER, T. R., LEWIS, S. L., FELDPAUSCH, T. R., AFFUM-BAFFOE, K., FOLI, E. G., HAMER, K. C. & SWAINE, M. D. 2012. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecology Letters 15:11201129.CrossRefGoogle ScholarPubMed
FEELEY, K. J., WRIGHT, S. J., NUR SUPARDI, M. N., KASSIM, A. R. & DAVIES, S. J. 2007. Decelerating growth in tropical forest trees. Ecological Letters 10:461469.Google Scholar
FIELD, A. 2009. Discovering statistics using SPSS. (Third edition). Sage, London. 896 pp.Google Scholar
FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS (FAO) 2010. Global Forest Resources Assessment, 2010. Country Report, Ghana. FRA 2010/077. Food and Agriculture Organization, Rome. 49 pp.Google Scholar
GAUCH, H. G. & WHITTAKER, R. H. 1972. Coenocline simulation. Ecology 53:446451.CrossRefGoogle Scholar
GOULDEN, M. L., MILLER, S. D., DA ROCHA, H. R., MENTON, M. C., DE FREITAS, H. C., E SILVA FIGUEIRA, A. M. & DE SOUSA, C. A. D. 2004. Diel and seasonal patterns of tropical forest CO2 exchange. Ecological Applications 14:4254.CrossRefGoogle Scholar
GOVERNMENT OF GHANA. 2011. Ghana's second national communication to UNFCC. Environmental Protection Agency, Accra. 168 pp.Google Scholar
HALL, J. B. & SWAINE, M. D. 1976. Classification and ecology of close-canopy forest in Ghana. Journal of Ecology 64:913951.Google Scholar
HALL, J. B. & SWAINE, M. D. 1981. Distribution and ecology of vascular plants in a tropical rain forest. Forest vegetation in Ghana. Geobotany 1. Dr. W. Junk Publishers, The Hague. 383 pp.Google Scholar
HAWTHORNE, W.D. 1995. Ecological profiles of Ghanaian forest trees. Tropical Forestry Paper 29. Oxford Forestry Institute, Oxford. 345 pp.Google Scholar
HAWTHORNE, W. D. 1996. Holes and the sums of parts in Ghanaian forest: regeneration, scale and sustainable use. Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences 104b:75–176.Google Scholar
HAWTHORNE, W. D. & ABU-JUAM, M. 1995. Forest protection in Ghana. IUCN, Gland and Cambridge. 219 pp.Google Scholar
HAWTHORNE, W. D. & GYAKARI, N. 2006. Photo guide for the forest trees of Ghana. A tree-spotter's field guide for identifying largest trees. Oxford Forestry Institute, Oxford. 432 pp.Google Scholar
HAWTHORNE, W. D & JONGKIND, C. 2006. Woody plants of western African forests. A guide to the forest trees, shrubs and lianas from Senegal to Ghana. Royal Botanic Gardens, Kew. 1040 pp.Google Scholar
HIJMANS, R. J., CAMERON, S. E., PARRA, J. L., JOHNS, P. G. & JARVIS, A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:19651978.Google Scholar
HOLMGREN, M. & POORTER, L. 2007. Does a ruderal strategy dominate the endemic flora of the West African forests? Journal of Biogeography 34:11001111.Google Scholar
JOHN, R., DALLING, J. W., HARMS, K. E., YAVITT, J. B., STALLARD, R. F., MIRABELLO, M., HUBBELL, S. P., VALENCIA, R., NAVARRETE, H. & VALLEJO, M. 2007. Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences USA 104:864–869.Google Scholar
KATO, M., ITIOKA, T., SAKAI, S., MOMOSE, K., YAMANE, S., HAMID, A. A. & INOUE, T. 2000. Various population fluctuation patterns of light-attracted beetles in a tropical lowland dipterocarp forest in Sarawak. Population Ecology 42:97104.Google Scholar
LOESCHER, H., OBERBAUER, S., GHOLZ, H. & CLARK, D. 2003. Environmental controls on net ecosystem-level carbon exchange and productivity in a Central American tropical wet forest. Global Change Biology 9:396412.Google Scholar
LOGAH, F. Y., OBUOBIE, E., OFORI, D. & KANKAM-YEBOAH, K. 2013. Analysis of rainfall variability in Ghana. International Journal of Latest Research in Engineering and Computing 1:18.Google Scholar
MALHI, Y. & WRIGHT, J. 2004. Spatial patterns and recent trends in the climate of tropical rainforest regions. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359:311329.Google Scholar
MAHARJAN, S. K., POORTER, L., HOLMGREN, M., BONGERS, F., WIERINGA, J. J. & HAWTHORNE, W. D. 2011. Plant functional traits and the distribution of West African rain forest trees along the rainfall gradient. Biotropica 43:552561.Google Scholar
METZ, C. E. 1978. Basic principles of ROC analysis. Seminar in Nuclear Medicine 8:283298.CrossRefGoogle ScholarPubMed
MOLES, A. T., WARTON, D. I., WARMAN, L., SWENSON, N. G., LAFFAN, S. W., ZANNE, A. E., PITMAN, A., HEMMINGS, F. A. & LEISHMAN, M. R. 2009. Global patterns in plant height. Journal of Ecology 97:923932.CrossRefGoogle Scholar
NEPSTAD, D. C., TOHVER, I. M., RAY, D., MOUTINHO, P. & CARDINOT, G. 2007. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88:22592269.CrossRefGoogle Scholar
OKSANEN, J. & MINCHIN, P. R. 2002. Continuum theory revisited: what shape are species responses along ecological gradients? Ecological Modelling 157:119129.Google Scholar
PAUSAS, J. G. & AUSTIN, M. 2001. Patterns of plant species richness in relation to different environments: an appraisal. Journal of Vegetation Science 12:153166.CrossRefGoogle Scholar
PEARCE, J. & FERRIER, S. 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling 133:225245.Google Scholar
PHILLIPS, O. L., VAN DER HEIJDEN, G., LEWIS, S. L., LOPEZ-GONZALEZ, G., ARAGAO, L. E., LLOYD, J., MALHI, Y., MONTEAGUDO, A., ALMEIDA, S., DAVILA, E. A., AMARAL, I., ANDELMAN, S., ANDRADE, A., ARROYO, L., AYMARD, G., BAKER, T. R., BLANC, L., BONAL, D., DE OLIVEIRA, A. C., CHAO, K. J., CARDOZO, N. D., DA COSTA, L., FELDPAUSCH, T. R., FISHER, J. B., FYLLAS, N. M., FREITAS, M. A., GALBRAITH, D., GLOOR, E., HIGUCHI, N., HONORIO, E., JIMENEZ, E., KEELING, H., KILLEEN, T. J., LOVETT, J. C., MEIR, P., MENDOZA, C., MOREL, A., VARGAS, P. N., PATINO, S., PEH, K. S., CRUZ, A. P., PRIETO, A., QUESADA, C. A., RAMIREZ, F., RAMIREZ, H., RUDAS, A., SALAMAO, R., SCHWARZ, M., SILVA, J., SILVEIRA, M., SLIK, J. W., SONKE, B., THOMAS, A. S., STROPP, J., TAPLIN, J. R., VASQUEZ, R. & VILANOVA, E. 2010. Drought-mortality relationships for tropical forests. New Phytologist 187:631646.Google Scholar
RYDGREN, K., ØKLAND, R. H. & ØKLAND, T. 2003. Species response curves along environmental gradients. a case study from SE Norwegian swamp forests. Journal of Vegetation Science 14:869880.Google Scholar
SHEFFIELD, J. & WOOD, E. F. 2008. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate Dynamics 31:79105.Google Scholar
STERCK, F., MARKESTEIJN, L., TOLEDO, M., SCHIEVING, F. & POORTER, L. 2014. Sapling performance along resource gradients drives tree species distributions within and across tropical forests. Ecology in press.CrossRefGoogle Scholar
SWAINE, M. 1996. Rainfall and soil fertility as factors limiting forest species distributions in Ghana. Journal of Ecology 84:419428.Google Scholar
SWETS, J. A. 1988. Measuring the accuracy of diagnostic systems. Science 240:12851293.Google Scholar
TER BRAAK, C. J., & LOOMAN, C. W. 1986. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65:311.Google Scholar
TER STEEGE, H., PITMAN, N. C., PHILLIPS, O. L., CHAVE, J., SABATIER, D., DUQUE, A., MOLINO, J.-F., PRÉVOST, M.-F., SPICHIGER, R. & CASTELLANOS, H. 2006. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444447.CrossRefGoogle ScholarPubMed
TOLEDO, M., POORTER, L., PEÑA-CLAROS, M., ALARCÓN, A., BALCÁZAR, J., CHUVIÑA, J., LEAÑO, C., LICONA, J. C., TER STEEGE, H. & BONGERS, F. 2011. Patterns and determinants of floristic variation across lowland forests of Bolivia. Biotropica 43:405413.Google Scholar
TOLEDO, M., PEÑA-CLAROS, M., BONGERS, F., ALARCÓN, A., BALCÁZAR, J., CHUVIÑA, J., LEAÑO, C., LICONA, J. C. & POORTER, L. 2012. Distribution patterns of tropical woody species in response to climatic and edaphic gradients. Journal of Ecology 100:253263.Google Scholar
VEENENDAAL, E. M. & SWAINE, M. D. 1998. Limits to trees species distribution in lowland tropical rain forest. Pp. 163191 in Newbery, D. M., Prins, H. H. T. & Brown, N. D. (eds.). Dynamics of tropical communities. The 37th Symposium of the British Ecological Society. Blackwell Science, Oxford.Google Scholar
VEENENDAAL, E., SWAINE, M., LECHA, R., WALSH, M., ABERBRESE, I. & OWUSU-AFRIYIE, K. 1996. Responses of West African forest tree seedlings to irradiance and soil fertility. Functional Ecology 10:501511.Google Scholar
VLAM, M., BAKER, P. J., BUNYAVEJCHEWIN, S. & ZUIDEMA, P. A. 2014. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees. Oecologia 174:14491461.Google Scholar
WRIGHT, S. J. 2010. The future of tropical forests. Annals of the New York Academy of Sciences 1195:127.Google Scholar
ZUUR, A. F., IENO, E. N. & ELPHICK, C. S. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1:314.Google Scholar