Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-10T06:56:58.886Z Has data issue: false hasContentIssue false

Variable reproductive strategies of an African savanna frog, Phrynomantis microps (Amphibia, Anura, Microhylidae)

Published online by Cambridge University Press:  30 September 2011

Mareike Hirschfeld
Affiliation:
Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Herpetology, Invalidenstr. 43, 10115 Berlin, Germany
Mark-Oliver Rödel*
Affiliation:
Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Herpetology, Invalidenstr. 43, 10115 Berlin, Germany
*
1Corresponding author. Email: mo.roedel@mfn-berlin.de

Abstract:

West African savannas are habitats with unpredictable rainfall. Species with varying life-history traits may be more successful in these environments than species with fixed traits. We studied the reproduction strategies of the microhylid frog Phrynomantis microps in different savanna types, a humid savanna in Ivory Coast and a drier one in Benin. We recorded 5437 clutches in eight ponds in the humid savanna during five consecutive rainy seasons. A further 694 clutches were investigated in 10 ponds in Benin in one rainy season. For each clutch, we recorded egg numbers, deposition time, location within the pond and rainfall. Precipitation was important in triggering reproduction. However, the amount of rainfall needed differed in relation to rainy season length and total annual rainfall. Especially in years and regions with a late rainy season a threshold of minimum precipitation was needed to initiate spawning, indicating a trade-off between the need to reproduce and the survival probabilities of offspring in ponds with a high desiccation risk. Egg numbers per clutch further differed between pond sizes, breeding season length, as well as to time within the rainy season. Potential explanations for these differences, in particular desiccation and predation risks are discussed, but need further experimental support.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ADEBA, P. J., KOUASSI, P. & RÖDEL, M.-O. 2010. Anuran amphibians in a rapidly changing environment – revisiting Lamto, Côte d'Ivoire, 40 years after the first herpetofaunal investigations. African Journal of Herpetology 60:116.CrossRefGoogle Scholar
AICHINGER, M. 1987. Annual activity patterns of anurans in a seasonal neotropical environment. Oecologia 71:583592.CrossRefGoogle Scholar
BALINSKY, B. I. 1969. The reproductive ecology of amphibians in the Transvaal Highveld. Zoologica Africana 4:3793.CrossRefGoogle Scholar
BANKS, B. & BEEBEE, T. J. C. 1986. A comparison of the fecundities of two species of toad (Bufo bufo and B. calamita) from different habitat types in Britain. Journal of Zoology 208:325337.CrossRefGoogle Scholar
BARBAULT, R. & TREFAUT RODRIGUES, M. 1979. Observation sur la reproduction et la dynamique des populations de quelques anoures tropicaux. IV. Phrynobatrachus accraensis. Bulletin de l’ Institut fondamental d'Afrique noire 41:417428.Google Scholar
BOURLIÈRE, F. & HADLEY, M. 1983. Present-day savannas: an overview. Pp. 117 in Bourlière, F. (ed.). Ecosystems of the world: 13 Tropical savannas. Elsevier, Amsterdam.Google Scholar
BRAGG, A. N. 1945. The spadefoot toads in Oklahoma with a summary of our knowledge of the group. II. American Naturalist 79:5272.CrossRefGoogle Scholar
CHANNING, A. 1976. Life histories of frogs in the Namib desert. Zoologica Africana 11:299312.CrossRefGoogle Scholar
CHANNING, A. & HOWELL, K. M. 2005. Amphibians of East Africa. Cornell University Press, Ithaca. 418 pp.Google Scholar
DE WIT, M. J. & STANKIEWICZ, J. 2006. Changes in surface water supply across Africa with predicted climate change. Science 311:19171921.CrossRefGoogle ScholarPubMed
DONNELLY, M. A. & CRUMP, M. L. 1998. Potential effects of climate change on two neotropical amphibian assemblages. Climate Change 39:541561.CrossRefGoogle Scholar
FORGE, P. & BARBAULT, R. 1977. Écologie de la reproduction et du développement larvaire d'un amphibien déserticole Bufo pentoni Anderson, 1893, au Sénégal. Terre Vie 31:117125.Google Scholar
GOTTSBERGER, B. & GRUBER, E. 2004. Temporal partitioning of reproductive activity in a neotropical anuran community. Journal of Tropical Ecology 20:271280.CrossRefGoogle Scholar
GRAFE, U. T. 1988. Untersuchungen zur Fortpflanzungsbiologie und zu Lebensstrategien von Hyperolius viridiflavus (Amphibia, Anura, Hyperoliidae). Diploma Thesis, University of Würzburg. 68 pp.Google Scholar
GRINDAL, S. D., COLLARD, T. S., BRIGHAM, R. M. & BARCLAY, M. R. 1992. The influence of precipitation on reproduction by Myotis bats in British Columbia. American Midland Naturalist 128:339344.CrossRefGoogle Scholar
HAU, M. 2001. Timing of breeding in variable environments: tropical birds as model systems. Hormones and Behavior 40:281290.CrossRefGoogle ScholarPubMed
HÖDL, W. 1992. Reproductive behaviour in the neotropical foam-nesting frog Pleurodema diplolistris (Leptodactylidae). Amphibia–Reptilia 13:263274.CrossRefGoogle Scholar
HOOGMOED, M. S. & GORZULA, S. J. 1979. Checklist of the savanna inhabiting frogs of the El Manteco region with notes on their ecology and the description of a new species of treefrog (Hylidae, Anura). Zoologische Mededelingen 54:183216.Google Scholar
HOWARD, R. D. 1978. The influence of male-defended oviposition sites on early embryo mortality in bullfrogs. Ecology 59:789798.CrossRefGoogle Scholar
KLUGE, A. G. 1981. The life history, social organization, and parental behavior of Hyla rosenbergi Boulenger, a nest-building gladiator frog. Miscellaneous Publications, Museum of Zoology, University of Michigan 160:1170.Google Scholar
KURAMOTO, M. 1978. Correlations of quantitative parameters of fecundity in amphibians. Evolution 12:287296.CrossRefGoogle Scholar
LALIBERTÉ, E., WELLS, J. A., DECLERCK, F., METCALFE, D. J., CATTERALL, C. P., QUEIROZ, C., AUBIN, I., BONSER, S. P., DING, Y., FRATERRIGO, J. M., MCNAMARA, S., MORGAN, J. W., SÁNCHEZ MERLOS, D., VESK, P. A. & MAYFIELD, M. M. 2010. Land-use intensification reduces functional redundancy and response diversity in plant communities. Ecology Letters 13:7686.CrossRefGoogle ScholarPubMed
LAMOTTE, M. 1983. Amphibians in savanna ecosystems. Pp. 313323 in Boulière, F. (ed.). Ecosystems of the world: 13 Tropical savannas. Elsevier, Amsterdam.Google Scholar
LAMPERT, K. P. & LINSENMAIR, K. E. 2001. Alternative life cycle strategies in the West African reed frog, Hyperolius nitidilus: the answer to an unpredictable environment? Oecologia 130:364372.CrossRefGoogle Scholar
LEE, A. K. 1967. Studies in Australian amphibia. II. Taxonomy, ecology and evolution of the genus Heleioporus Gray (Anura: Leptodactylidae). Australian Journal of Zoology 15:367439.CrossRefGoogle Scholar
LEGENDRE, P. & LEGENDRE, L. 1998. Numerical ecology. (Second edition). Elsevier Science, Amsterdam. 853 pp.Google Scholar
LINSENMAIR, K. E. 1998. Risk spreading and risk reducing tactics of West African anurans in an unpredictable and stressful environment. Pp. 221241 in Newbery, D. M., Brown, N. & Prins, H. H. T. (eds.). Dynamics of tropical communities. Blackwell Science, Oxford.Google Scholar
LIPS, K. R. 2001. Reproductive trade-offs and bet-hedging in Hyla calypsa, a Neotropical treefrog. Oecologia 128:509518.CrossRefGoogle ScholarPubMed
MADSEN, T. & SHINE, R. 2000. Rain, fish and snakes: climatically driven population dynamics of arafura filesnakes in tropical Australia. Oecologia 124:208215.CrossRefGoogle ScholarPubMed
MADSEN, T., UJVARI, B., SHINE, R. & OLSSON, M. 2006. Rain, rats and pythons: climate-driven population dynamics of predators and prey in tropical Australia. Australian Ecology 31:3037.CrossRefGoogle Scholar
MORRISON, C. & HERO, J.-M. 2003. Geographic variation in life-history characteristics of amphibians: a review. Journal of Animal Ecology 72:270279.CrossRefGoogle Scholar
NAGO, S. G. A., GRELL, O., SINSIN, B. & RÖDEL, M.-O. 2006. The amphibian fauna of the Pendjari National Park and surroundings, northern Benin. Salamandra 42:93108.Google Scholar
NEWMAN, R. A. 1989. Developmental plasticity of Scaphiopus couchii tadpoles in an unpredictable environment. Ecology 40:17751787.CrossRefGoogle Scholar
RABB, G. B. 1973. Evolutionary aspects of the reproductive behaviour of frogs. Pp. 213227 in Vial, J. L. (ed.). Evolutionary biology of the anurans. University of Missouri Press, Columbia.Google Scholar
RABB, G. B. & RABB, M. S. 1963. On the behaviour and breeding biology of the African pipid frog Hymenochirus boettgeri. Zeitschrift für Tierpsychologie 20:215241.CrossRefGoogle Scholar
RITKE, M. E., BABB, J. G. & RITKE, M. K. 1992. Temporal patterns of reproductive activity in the gray treefrog (Hyla chrysoscelis). Journal of Herpetology 26:107111.CrossRefGoogle Scholar
RÖDEL, M.-O. 1998. Kaulquappengesellschaften ephemerer Savannengewässer in Westafrika. Edition Chimaira, Frankfurt. 195 pp.Google Scholar
RÖDEL, M.-O. 2000. Herpetofauna of West Africa. Vol I. Amphibians of the West African savanna. Edition Chimaira, Frankfurt. 332 pp.Google Scholar
RÖDEL, M.-O. & LINSENMAIR, K. E. 1997. Predator-induced swarms in the tadpoles of an African savanna frog, Phrynomantis microps. Ethology 103:902914.CrossRefGoogle Scholar
RÖDEL, M.-O., SPIELER, M., GRABOW, K. & BÖCKHELER, C. 1995. Hemisus marmoratus (Peters, 1854) (Anura: Hemisotidae), Fortpflanzungsstrategien eines Savannenfrosches. Bonner Zoologische Beiträge 45:191207.Google Scholar
RÖDEL, M.-O., LAMPERT, K. P. & LINSENMAIR, K. E. 2006. Reproductive biology of the West African savannah frog Hyperolius nasutus Günther, 1864 (Amphibia: Anura: Hyperoliidae). Herpetozoa 19:312.Google Scholar
RUDOLF, V. H. W. & RÖDEL, M.-O. 2005. Oviposition site selection in a complex and variable environment: the role of habitat quality and conspecific cues. Oecologia 142:316325.CrossRefGoogle Scholar
SALTHE, S. N. & MECHAM, J. S. 1974. Reproductive and courtship patterns. Pp. 309521 in Lofts, B. (ed.). Physiology of the Amphibia, Vol. II. Academic Press, New York & London.CrossRefGoogle Scholar
SATAKE, A., SASAKI, A. & IWASA, Y. 2001. Variable timing of reproduction in unpredictable environments: adaption of flood plain plants. Theoretical Population Biology 60:115.CrossRefGoogle ScholarPubMed
SCHLÜTER, A. & SALAS, A. W. 1991. Reproduction, tadpoles and ecological aspects of three syntopic microhylid species from Peru (Amphibia: Microhylidae). Stuttgarter Beiträge zur Naturkunde 458:117.Google Scholar
SHERIDAN, J. A. 2009. Reproductive variation corresponding to breeding season length in three tropical frog species. Journal of Tropical Ecology 25:583592.CrossRefGoogle Scholar
SHINE, R. & BROWN, G. P. 2008. Adapting to the unpredictable: reproductive biology of vertebrates in the Australian wet-dry tropics. Philosophical Transaction of the Royal Society London B 363:363373.CrossRefGoogle Scholar
SPIELER, M. & LINSENMAIR, K. E. 1997. Choice of optimal oviposition sites by Hoplobatrachus occipitalis (Anura: Ranidae) in an unpredictable and patchy environment. Oecologia 109:184199.CrossRefGoogle Scholar
TEJEDO, M. 1992. Absence of the trade-off between the size and number of offspring in the natterjack toad (Bufo calamita). Oecologia 90:294296.CrossRefGoogle ScholarPubMed
TELFORD, S. R. & DYSON, M. L. 1990. The effect of rainfall on interclutch interval in painted reed frogs (Hyperolius marmoratus). Copeia 1990:644648.CrossRefGoogle Scholar
WELLS, K. D. 2007. The ecology and behaviour of amphibians. University of Chicago Press, Chicago. 1148 pp.CrossRefGoogle Scholar
WILLIAMS, C. K. & NEWSOME, A. E. 1991. Adaptation in native mammals. Pp. 151167 in Haynes, C. D., Ridpath, M. G. & Williams, M. A. J. (eds.). Monsoonal Australia. Landscape, ecology and man in the northern lowlands. A. A. Balkema, Rotterdam.Google Scholar