Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-10T22:08:17.479Z Has data issue: false hasContentIssue false

Low velocity ion stopping of relevance to the US beam-target program

Published online by Cambridge University Press:  21 September 2006

CLAUDE DEUTSCH
Affiliation:
LPGP (CNRS-UMR 8578), Université Paris-Sud, Orsay France
ROMAIN POPOFF
Affiliation:
LPGP (CNRS-UMR 8578), Université Paris-Sud, Orsay France

Abstract

We have focused our attention on the stopping mechanisms involved in the recently proposed ion beam-target US program. This mechanism emphasizes out production of warm dense matter through pulsed ion beams, linearly accelerated, and interacting with thin foils in Bragg peak conditions. We reviewed the relevant energy loss mechanisms involved at moderate and low velocity ion projectile. Small velocities close to zero are given some attention.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Deutsch, C. (1986). Inertial confinement fusion-driven by intense ion beams. Annales de Phys. 11, 1.CrossRefGoogle Scholar
Deutsch, C., Maynard, G., Bimbot, R., Gardes, D., Dellanegra, S., Dumail, M., Kubica, B., Richard, A., Rivet, M.F., Servajean, A., Fleurier, C., Sanba, A., Hoffmann, D.H.H., Weyrich, K. & Wahl, H. (1989). Ion beam-plasma interaction—a standard model approach. Nucl. Instr. & Meth. Phys. Res. A 278, 3843.CrossRefGoogle Scholar
Deutsch, C. & Maynard, G. (2000). Stopping of pointlike charges in a dense electron fluid. Recent Res. Dev. Plasmas 1, 1.Google Scholar
Deutsch, C. (1977). Nodal expansion for a real matter plasma. Phys. Lett A 60, 317.CrossRefGoogle Scholar
Dufty, J.W., Talin, B. & Calisti, A. (2004). High Z ions in hot, dense matter. Adv. Quan. Chem. 46, 293.CrossRefGoogle Scholar
Dufty, J.W., Pegorelov, T.V., Talin, B. & Calisti, A. (2003). Nonlinear response of electron dynamics to a positive ion. J. Phys. A 36, 6057.CrossRefGoogle Scholar
Forster, D. (1975). Hydrodynamic Flustuations, Broken Symmetry, and Correlation Functions. Reading, MA: W. Benjamin.
Goldston, R.J. & Rutherford, P.H. (1995). Introduction to Plasma Physics. Bristol, PA: Institute of Physics Publishing.CrossRef
Grisham, L.R. (2004). Moderate energy ions for high energy density physics experiments. Phys. Plasmas 11, 5727.Google Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy-loss of heavy-ions in a plasma target. Phys. Rev. A 42, 23132321.CrossRefGoogle Scholar
Logan, B.G., Bieniosek, F.M., Celata, C.M., Henestroza, E., Kwan, J.W., Lee, E.P., Leitner, M., Roy, P.K., Seidl, P.A., Eylon, S., Vay, J.L., Waldron, W.L., Yu, S.S., Barnard, J.J., Callahan, D.A., Cohen, R.H., Friedman, A., Grote, D.P., Covo, M.K., Meier, W.R., Molvik, A.W., Lund, S.M., Davidson, R.C., Efthimion, P.C., Gilson, E.P., Grisham, L.R., Kaganovich, I.D., Qin, H., Startsev, E.A., Rose, D.V., Welch, D.R., Olson, C.L., Kishek, R.A., O'Shea, P., Haber, I. & Prost, L.R. (2005). Overview of US heavy ion fusion research. Nucl. Fusion 45, 131.CrossRefGoogle Scholar
Ng, A., Ao, T., Perrot, F., Dharma-Wardana, M.W.C. & Foord, M.E. (2005). Idealized slab plasma approach for the study of warm dense matter. Laser Part. Beams 23, 527537.Google Scholar
Oguri, Y., Hasegawa, J., Kaneko, J., Ogawa, M. & Horioka, K. (2005). Stopping of low energy highly charged ions in dense plasmas. Nucl. Instr. & Meth. Phys. Res. A 544, 76.CrossRefGoogle Scholar
Paul, H. & Schinner, A. (2003). Judging the reliability of stopping power tables and programs for heavy ions. Nucl. Instr. & Meth. Phys. Res. B 227, 461.Google Scholar
Talin, B., Dufour, E. Calisti, A., Gigosos, M.A., Gonzalez, M.A., Gaztelurrutia, D., &Dufty, J.W. (2003). Molecular dynamics simulation for modeling plasma spectroscopy. J. Phys. A 36, 6049.Google Scholar