Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T11:40:37.121Z Has data issue: false hasContentIssue false

An efficient shock capturing scheme for ion beam target simulation

Published online by Cambridge University Press:  09 March 2009

N. K. Gupta
Affiliation:
Kernforschungszentrum Karlsruhe, Institut für Neutronenphysik und Reaktortechnik, Postfach 3640, D-7500 Karlsruhe, Federal Republic of Germany
C. D. Munz
Affiliation:
Kernforschungszentrum Karlsruhe, Institut für Neutronenphysik und Reaktortechnik, Postfach 3640, D-7500 Karlsruhe, Federal Republic of Germany
B. Goel
Affiliation:
Kernforschungszentrum Karlsruhe, Institut für Neutronenphysik und Reaktortechnik, Postfach 3640, D-7500 Karlsruhe, Federal Republic of Germany

Abstract

A high resolution shock capturing numerical scheme in Lagrangian geometry is presented for ion beam target simulations. The scheme can accommodate any given analytical or tabular equation of state. Numerical results for a number of test problems show that the scheme is free from spurious numerical oscillations near strong gradients. Results are also presented for the simulation of a typical proton beam from the pinch reflex diode of Karlsruhe light ion beam facility KALIF incident on slab aluminum target.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennett, B. I. et al. 1978 Report, Los Alamos National Laboratory LA-7130.Google Scholar
Bluhm, H. et al. 1988 in Proc. 7th Intern Conf.on High-Power Particle Beams (Ed. Bauer, W. & Schmidt, W.) Karlsruhe July 4–8, p. 381.Google Scholar
Cormack Mac, R. W. 1985 Report, Americal Institute of Aeronautics and Astronautics AIAA-85–0032.Google Scholar
Einfeldt, B. 1988 Siam J. Numer. Anal. 25, 294.CrossRefGoogle Scholar
Einfeldt, B. et al. 1990 J. Comput. Phys. (in preparation)Google Scholar
Godunov, S. K. 1959 Mat. Sbornik 47, 271.Google Scholar
Goel, B. P. et al. 1987 Laser and Particle Beams 5, 907.CrossRefGoogle Scholar
Goel, B. & Bluhm, J. 1988 J. dē Physique C7, 169.Google Scholar
Goel, B. & Gupta, N. K. 1989 in Proc. 5th Intern. Conf. on Emerging Nuclear Energy Systems (Ed. von Möllendorff, U. & Goel, B.) Karlsruhe July 3–6 (World Scientific), p. 153.Google Scholar
Gupta, N. K. et al. 1990 Report Kernforschungszentrum, Karlsruhe KfK-4698.Google Scholar
Harten, A. 1984 SIAM J. Numer. Anal. 21, 1.CrossRefGoogle Scholar
Harten, A. et al. 1983 SIAM Rev. 25, 35.CrossRefGoogle Scholar
Lax, P. D. 1954 Comm. Pure Appl. Math, 7, 159.CrossRefGoogle Scholar
Leer, B. Van 1979 J. Comput. Phys, 32, 101.CrossRefGoogle Scholar
Marchuk, G. I. 1975 Methods of Numerical Mathematics (Springer-Verlag, New York/Heidelberg/Berlin).Google Scholar
Munz, C. D. 1986 in Finite Approximation in Fluid Mechanics (Ed. Hirschel, E. H.), Notes on Numerical Fluid Mechanics 14 (Vieweg), p. 195.Google Scholar
Munz, C. D. 1988 J. Comput. Phys. 77, 18.CrossRefGoogle Scholar
Neumann, Von J. & Richtmyer, R. D. 1950 J. Appl. Phys. 21, 232.CrossRefGoogle Scholar
Richtmyer, R. D. & Morton, K. W. 1976 Difference Methodes for Initial-Value Problems, 2nd Edition (John Wiley and Sons, New York/London/Sydney).Google Scholar
Roe, P. L. 1981 J. Comput. Phys. 43, 357.CrossRefGoogle Scholar
Sod, G. A. 1978 J. Comput. Phys 27, 1.CrossRefGoogle Scholar
Stoer, J. & Bulirsch, R. R. 1978 Einführung in die Numerische Mathematik (Springer Verlag, New York/Heidelberg/Berlin).CrossRefGoogle Scholar
Sweby, P. K. 1984 Siam J. Numer. Anal. 22, 995.CrossRefGoogle Scholar
Woodward, P. & Colella, P. 1984 J. Comput Phys. 54, 115.CrossRefGoogle Scholar