Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T22:19:11.607Z Has data issue: false hasContentIssue false

Electron acceleration in vacuum with two overlapping linearly polarized laser pulses

Published online by Cambridge University Press:  11 July 2012

Xiaoshan Wang
Affiliation:
School of Nuclear Science & Technology, Lanzhou University, Lanzhou, China
Hongchuan Du
Affiliation:
School of Nuclear Science & Technology, Lanzhou University, Lanzhou, China
Bitao Hu*
Affiliation:
School of Nuclear Science & Technology, Lanzhou University, Lanzhou, China
*
Address correspondence and reprint requests to: Bitao Hu, 222, S. Tianshui Rd, Lanzhou 730000, Gansu, China. E-mail: hubt@lzu.edu.cn

Abstract

A novel electron acceleration approach with two overlapping linearly polarized laser pulses in vacuum is proposed. By our simulation, the energy and space spreads can reduce greatly comparing with the acceleration with only one laser pulse having doubled peak laser intensity for realistic laser parameters and the average energy gain from our scheme can be doubled for certain pulse lengths, at the same time. Using numerical simulation, analytical criteria for optimal regimes of our acceleration scheme is found.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barton, J.P. & Alexander, D.R. (1989). Fifth-order corrected electro-magnetic field components for a fundamental Gaussian beam. J. Appl. Phys. 66, 28002802.CrossRefGoogle Scholar
Esarey, E., Sprangle, P. & Krall, J. (1995 a). Laser acceleration of electrons in vacuum. Phys. Rev. E 52, 54435453.CrossRefGoogle ScholarPubMed
Esarey, E., Sprangle, P., Pilloff, M. & Krall, J. (1995 b). Theory and group velocity of ultrashort, tightly focused laser pulses. J. Opt. Soc. Am. B 12, 16951703.CrossRefGoogle Scholar
Hafizi, B., Ganguly, A.K., Ting, A., Moore, C.I. & Sprangle, P. (1999). Analysis of Gaussian beam and Bessel beam driven laser accelerators. Phys. Rev. E 60, 47794792.CrossRefGoogle ScholarPubMed
Hua, J.F., Ho, Y.K., Lin, Y.Z., Chen, Z., Xie, Y.J., Zhang, S.Y., Yan, Z. & Xu, J.J. (2004). High-order corrected fields of ultrashort, tightly focused laser pulses. Appl. Phys. Lett. 85, 37053707.CrossRefGoogle Scholar
Huang, S.H. & Wu, F.M. (2008). Electron acceleration by a focused laser pulse in static electric field. Acta Phys. Sin. 57, 76807684 (in Chinese).CrossRefGoogle Scholar
Karmakar, A. & Pukhov, A. (2007). Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses. Laser Part. Beams 25, 371377.CrossRefGoogle Scholar
Kienberger, R., Hentschel, M., Uiberacker, M., Spielmann, C., Kitzler, M., Scrinzi, A., Wieland, M., Westerwalbesloh, T., Kleineberg, U., Heizmann, U., Drescher, M. & Krausz, F. (2002). Steering attosecond electron wave packets with light. Science 297, 11441148.CrossRefGoogle ScholarPubMed
Ledingham, K.W.D., McKenna, P. & Singhal, R.P. (2003). Applications for nuclear phenomena generated by ultra-intense lasers. Science 300, 11071111.CrossRefGoogle ScholarPubMed
Li, J.X., Fan, X.L., Zang, W.P. & Tian, J.G. (2011). Vacuum electron acceleration driven by two crossed Airy beams. Opt. Lett. 36, 648650.CrossRefGoogle ScholarPubMed
Lourenco, S., Kowarsch, W., Scheid, W. & Wang, P.X. (2010). Acceleration of electrons and electromagnetic fields of highly intense laser pulses. Laser Part. Beams 28, 195201.CrossRefGoogle Scholar
Malka, G., Lefebvre, E. & Miquel, J.L. (1997). Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser. Phys. Rev. Lett. 78, 33143317.CrossRefGoogle Scholar
Malka, G. & Miquel, J.L. (1996). Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target. Phys. Rev. Lett. 77, 7578.CrossRefGoogle ScholarPubMed
Perry, M.D., Pennington, D., Stuart, B.C., Tietbohl, G., Britten, J.A., Brown, C., Herman, S., Golick, B., Kartz, M., Miller, J., Powell, H.T., Vergino, M. & Yanovsky, V. (1999). Patawatt laser pulses. Opt. Lett. 24, 160162.CrossRefGoogle ScholarPubMed
Salamin, Y.I. & Keitel, C.H. (2002). Electron acceleration by a tightly focused laser beam. Phys. Rev. Lett. 88, 095005(4).CrossRefGoogle ScholarPubMed
Salamin, Y.I., Mocken, G.R. & Keitel, C.H. (2003). Relativistic electron dynamics in intense crossed laser beams: Acceleration and Compton harmonics. Phys. Rev. E 67, 016501(13).CrossRefGoogle ScholarPubMed
Schmid, K., Veisz, L., Tavella, F., Benavides, S., Tautz, R., Herrmann, D., Buck, A., Hidding, B., Marcinkevicius, A., Schramm, U., Geissler, M., Meyerter-Vehn, J., Habs, D. & Krausz, F. (2009). Few-cycle laser-driven electron acceleration. Phys. Rev. Lett. 102, 124801(4).CrossRefGoogle ScholarPubMed
Singh, K.P., Sajal, V. & Gupta, D.N. (2008). Quasi-monoenergetic GeV electrons from the interaction of two laser pulses with a gas. Laser Part. Beams 26, 597604.CrossRefGoogle Scholar
Smorenburg, P.W., Kamp, L.P.J., Geloni, G.A. & Luiten, O.J. (2010). Coherently enhanced radiation reaction effects in laser-vacuum acceleration of electron bunches. Laser Part. Beams 28, 553562.CrossRefGoogle Scholar
Strickl, D. & Mourou, G. (1985). Compression of amplified chirped optical pulses. Opt. Commum. 56, 219–211.CrossRefGoogle Scholar
Stupakov, G.V. & Zolotorev, M.S. (2000). Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches. Phys. Rev. Lett. 86, 52745277.CrossRefGoogle Scholar
Xie, Y.J., Wang, W., Zheng, L., Zhang, X.P., Kong, Q., Ho, Y.K. & Wang, P.X. (2010). Field structure and electron acceleration in a slit laser beam. Laser Part. Beams 28, 2126.CrossRefGoogle Scholar