Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T09:11:17.388Z Has data issue: false hasContentIssue false

Layers from initial Rayleigh density profiles by directed nonlinear force driven plasma blocks for alternative fast ignition

Published online by Cambridge University Press:  23 January 2009

E. Yazdani
Affiliation:
Physics Department, Sharif University of Technology, Tehran, Iran
Y. Cang
Affiliation:
School of Computation and Mathematics, University of Western Sydney, Penrith, Australia Institute of Physics, Chinese Academy of Sciences, Beijing, China
R. Sadighi-Bonabi
Affiliation:
Physics Department, Sharif University of Technology, Tehran, Iran
H. Hora*
Affiliation:
Department of Theoretical Physics, University of New South Wales, Sydney, Australia
F. Osman
Affiliation:
School of Computation and Mathematics, University of Western Sydney, Penrith, Australia
*
Address correspondence and reprint requests to: Heinrich Hora, Department of Theoretical Physics, University of New South Wales, Sydney 2052, Australia. E-mail: h.hora@unsw.edu.au

Abstract

Measurement of extremely new phenomena during the interaction of laser pulses with terawatt and higher power and picoseconds with plasmas arrived at drastically different anomalies in contrast to the usual observations if the laser pulses were very clean with a contrast ratio higher than 108. This was guaranteed by the suppression of prepulses during less than dozens of ps before the arrival of the main pulse resulting in the suppression of relativistic self-focusing. This anomaly was confirmed in many experimental details, and explained and numerically reproduced as a nonlinear force acceleration of skin layers generating quasi-neutral plasma blocks with ion current densities above 1011 A/cm2. This may support the requirement to produce a fast ignition deuterium tritium fusion at densities not much higher than the solid state by a single shot PW-ps laser pulse. With the aim to achieve separately studied ignition conditions, we are studying numerically how the necessary nonlinear force accelerated plasma blocks may reach the highest possible thickness by using optimized dielectric properties of the irradiated plasma. The use of double Rayleigh initial density profiles results in many wavelength thick low reflectivity directed plasma blocks of modest temperatures. Results of computations with the genuine two-fluid model are presented.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Badziak, J., Glowacz, S., Hora, H., Jablonski, S. & Wolowski, J. (2006). Studies of laser driven generation of fast-density plasma blocks for fast ignition. Laser Part. Beams 24, 249254.CrossRefGoogle Scholar
Badziak, J., Glowacz, S., Jablonski, S., Pahys, P., Wolowski, J. & Hora, H. (2004). Production of ultrahigh ion current densities at skin layer subrelativistic laser-plasma interaction. Plasma Phys. Control. Fusion 46, B541B555.CrossRefGoogle Scholar
Badziak, J., Kozlov, A.A., Makowksi, J., Parys, P., Ryc, L., Wolowski, J., Woryna, E. & Vankov, A.B. (1999). Investigation of ion streams emitted from plasma produced with a high-power picosecond laser. Laser Part. Beams 17, 323329.CrossRefGoogle Scholar
Bagge, E. & Hora, H. (1974). Calculation of the reduced penetration depth of relativistic electrons in plasmas for nuclear fusion. Atomkernenergie 24, 143146.Google Scholar
Bigot, B. (2006). Inertial fusion science in Europe. J. Phys. 133, 38.Google Scholar
Cang, Y., Osman, F., Hora, H., Zhang, J., Badziak, J., Wolowski, J., Jungwirth, K., Rohlena, J. & Ullschmied, J. (2005). Computations for nonlinear force driven plasma blocks by picosecond laser pulses for fusion. J. Plasma Phys. 71, 3551.CrossRefGoogle Scholar
Cowan, T.E., Parry, M.D., Key, M.H., Dittmire, T.R., Hatchett, S.P., Henry, E.A., Mody, J.D., Moran, M.J., Pennington, D.M., Phillips, T.W., Sangster, T.C., Sefcik, J.A., Singh, M.S., Snavely, R.A., Stoyer, M.A., Wilks, S.C, Young, P.E., Takahashi, Y., Dong, B., Fountain, W., Parnell, T., Johnson, J., Hunt, A.W. & Kuhl, T. (1999). High energy electrons, nuclear phenomena and heating in petawatt laser-solid experiments. Laser Part. Beams 17, 773783.CrossRefGoogle Scholar
Dean, S.O. (2008). The rational for and expanding inertial fusion energy program J. Fusion Energy 27, 149153.CrossRefGoogle Scholar
Gabor, D. (1952). Wave theory of plasmas. Proc. Roy. Soc. London A 213, 7286.Google Scholar
Ghoranneviss, M., Malekynia, B., Hora, H., Miley, G.H. & He, X.-T. (2008). Inhibition factor reduces fast ignition threshold for laser fusion using nonlinear force driven block acceleration. Laser Part. Beams 26, 105111.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blasevic, A., Ni, P., Rosmej, P., Roth, M., Tahir, N.A., Tauschwitz, A., Udera, S., Vanentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspectives for high energy density physics with intensive heavy ion and laser beams. Laser Part. Beams 23, 4754.CrossRefGoogle Scholar
Hoffmann, D.H.H., Weyrich, K., Wahl, H., Gardes, D., Bimbot, R. & Fleurier, C. (1990). Energy losses of heavy ions in a plasma target. Phys. Rev. A 42, 23132317.CrossRefGoogle Scholar
Hora, H. (1957). Electromagnetic Waves in Media with Continuously Variable Refractive Index. Jenaer Jahrbuch: Carl Zeiss Jena.Google Scholar
Hora, H. (1991). Plasmas at High Temperature and Density. Heidelberg: Springer.Google Scholar
Hora, H. (1994). Elektrodynamik: Felder und Wellen (electrodynamics: fields and waves. Regensburg, Germany: S. Roderer.Google Scholar
Hora, H. (2003). Skin-depth theory explaining anomalous picosecond-terawatt laser-plasma interaction. Czech. J. Phys. 53, 199217.CrossRefGoogle Scholar
Hora, H. (2007). New aspects for fusion energy using inertial confinement. Laser Part. Beams 25, 3745.CrossRefGoogle Scholar
Hora, H. (2009) Laser fusion with nonlinear force driven plasma blocks: thresholds and dielectric effects. Laser and Particle Beams, 27 (In press).Google Scholar
Hora, H., Badziak, J., Read, M.N., Li, Yu-Tong, Liang, Tian-Jiao, Liu Hong, Sheng Zheng-Ming, Zhang, Jie, Osman, F., Miley, G.H., Zhang, Weiyan, He, Xianto, Peng, Hanscheng, Glowacz, S., Jablonski, S., Wolowski, J., Skladanowski, Z., Jungwirth, K., Rohlena, K. & Ullschmied, J. (2007). Fast ignition by laser driven particle beams of very high intensity Phys. Plasmas 14, 072701-1–072701-7.CrossRefGoogle Scholar
Hora, H., Badziak, J., Boody, F., Höpfl, R., Jungwirth, K., Kralikova, B., Kraska, J., Laska, L., Parys, P., Perina, P., Pfeifer, K. & Rohlena, J. (2002). Effects of picosecond and ns laser pulses for giant ion source. Opt. Commun. 207, 333338.CrossRefGoogle Scholar
Hora, H., Badziak, J., Glowacz, S., Jablonski, S., Skladanowski, Z., Osman, F., Cang, Y., Zhang, J., Miley, G.H., He, X.T., Zhang, W., Rohlena, K., Ullschmied, J. & Jungwirth, K. (2005). Fusion energy from plasma block ignition. Laser Part. Beams 23, 423432.CrossRefGoogle Scholar
Hora, H., Lalousis, P. & Eliezer, S. (1984). Analysis of the inverted double layers in nonlinear force produced cavitons at laser-plasma interaction. Phys. Rev. Lett. 53, 16501652.CrossRefGoogle Scholar
Hora, H., Malekynia, B., Ghoranneviss, M., Miley, G.H. & He, X. (2008). Twenty times lower ignition threshold for laser driven fusion using collective effects and inhibition factor. Appl. Phys. Lett. 93, 011101-1–011101-3.CrossRefGoogle Scholar
Kerns, J.R., Rogers, W.C. & Clark, J.G. (1972). Bull. Am. Phys. Soc. 17, 629.Google Scholar
Lalousis, P. & Hora, H. (1983). First direct electron and ion fluid computation of high electrostatic fields in dense inhomogeneous plasmas with subsequent nonlinear laser interaction Laser Part. Beams 1, 283304.CrossRefGoogle Scholar
Lawreence, V.F. & Hora, H. (1980). A numerical study of wave propagation in inhomogeneous media and the Osterberg problem. Optik 55, 291302.Google Scholar
Lawrence, V.F. (1978). Momentum Transfer of Laser Radiation in Inhomogeneous Dielectrics. Ph.D. Thesis. Sydney, Australia: University of New South Wales.Google Scholar
Moses, E., Miller, G.H. & Kauffman, R.L. (2006). The ICF status and plans in the United States. J. Phys. 133, 916.Google Scholar
Nuckolls, J.H. & Wood, L. (2005). Future of inertial fusion energy. In Edward Teller Lectures, pp. 1314. London: Imperial College Press.Google Scholar
Osman, F., Cang, Y., Hora, H., Li-Hua, C., Hong, L., Xiantu, H., Badziak, J., Parys, A.B., Wolowski, J., Woryna, K., Jungwirth, K.,  Králikova, B., Krása, J., Láska, L., Pfeifer, M., Rohlena, K., Skála, J., Ullschmied, J. (2004). Skin depth plasma front interaction mechanism with prepulse suppression to avoid relativistic self-focusing for high-gain laser fusion. Laser & Part. Beams 22, 8387.CrossRefGoogle Scholar
Osterberg, H. (1958). Propagation of electromagnetic waves in inhomogeneous media. J. Opt. Soc. Am. 48, 513519.CrossRefGoogle Scholar
Rayleigh, L. (1880). Propagation of waves in inhomogeneous media. Proc. Royal Soc. London 11, 51.Google Scholar
Sauerbrey, R. (1996). Acceleration of femtosecond laser produced plasmas Phys. Plasmas 3, 47124716.CrossRefGoogle Scholar
Schlick, M. (1904). About the Reflection of Light in an Inhomogeneous layer. Ph.D. dissertation. Berlin, Germany: University Berlin.Google Scholar
Tabak, M., Hammer, J., Glinsky, M.N., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition of high-gain with ultrapowerfull lasers. Phys. Plasmas 1, 16261634.CrossRefGoogle Scholar
Zhang, P., He, J.T., Chen, D.B., Li, Z.H., Zhang, Y., Wong, Lang, Li, Z.H., Feng, B.H., Zhang, D.X., Tang, X.W. & Zhang, J. (1998). X-ray emission from ultraintense-ultrashort laser irradiation. Phys. Rev. E57, 37463752.Google Scholar