Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T11:06:01.697Z Has data issue: false hasContentIssue false

Modulation of continuous ion beams with low drift velocity by induced wakefield in background plasmas

Published online by Cambridge University Press:  01 February 2013

Zhang-Hu Hu
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China
Yuan-Hong Song
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China
Yong-Tao Zhao
Affiliation:
Institute of Modern Physics, Chinese Academy of Science, Lanzhou, China
You-Nian Wang*
Affiliation:
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China
*
Address correspondence and reprint requests to: You-Nian Wang, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, China116024. E-mail: ynwang@dlut.edu.cn

Abstract

Two-dimensional particle-in-cell simulations are performed to investigate the propagation of low energy continuous ion beams through background plasmas. It is shown that the continuous ion beam can be modulated into periodic short beam pulses by the induced wakefield, which can be adopted as a method to produce ultrashort ion beam pulses. Furthermore, the transport of the continuous ion beam in plasma with density gradient in the beam propagation direction is proposed and an enhanced longitudinal compression by density gradient is found due to the phase lock of ion pulses in the focusing regions of wakefield and reduced heating of plasma electrons.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bonatto, A., Pakter, R. & Rizzato, F.B. (2011). Self-consistent dynamics of electromagnetic pulses and wakefields in laser-plasma interactions. Laser Part. Beams 29, 399406.CrossRefGoogle Scholar
Caldwell, A., Lotov, K., Pukhov, A. & Simon, F. (2009). Proton-driven plasma-wakefield acceleration. Nat. Phys. 5, 363367.CrossRefGoogle Scholar
Chen, P., Dawson, J.M., Huff, R.W. & Katsouleas, T. (1985). Acceleration of electrons by the interaction of a bunched electron beam with a plasma. Phys. Rev. Lett. 54, 693696.CrossRefGoogle ScholarPubMed
Dorf, M.A., Kaganovich, I.D., Startsev, E.A. & Davidson, R.C. (2009). Enhanced self-focusing of an ion beam pulse propagating through a background plasma along a solenoidal magnetic field. Phys. Rev. Lett. 103, 075003.CrossRefGoogle ScholarPubMed
Drake, R.P. (2006). High-Energy-Density Physics. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Geddes, R., Nakamura, K., Plateau, G.R., Toth, Cs., Cormier-Michel, E., Esarey, E., Schroeder, C.B., Cary, J.R. & Leemans, W.P. (2008). Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 100, 215004.CrossRefGoogle ScholarPubMed
Henestroza, E., Eylon, S., Roy, P.K., Yu, S.S., Anders, A., Bieniosek, F.M., Greenway, W.G., Logan, B.G., Macgill, A., Derek, B.S., Vanecek, D.L. & Waldron, W.L. (2004). Design and characterization of a neutralized-transport experiment for heavy-ion fusion. Phys. Rev. ST Accel. Beams 7, 083501.CrossRefGoogle Scholar
Jones, M.E. & Keinigs, R. (1987). Ion plasma wave wakefield accelerators. IEEE Trans. Plasma Sci. 15, 203209.CrossRefGoogle Scholar
Kaganovich, I.D., Shvets, G., Startsev, E.A. & Davidson, R.C. (2001). Nonlinear charge and current neutralization of an ion beam pulse in a pre-formed plasma. Phys. Plasmas 8, 41804192.CrossRefGoogle Scholar
Kaganovich, I.D., Startsev, E.A., Sefkow, A.B. & Davidson, R.C. (2007). Charge and Current Neutralization of an Ion-Beam Pulse Propagating in a Background Plasma along a Solenoidal Magnetic Field. Phys. Rev. Lett. 99, 235002.CrossRefGoogle Scholar
Katsouleas, T. (1986). Physical mechanisms in the plasma wake-field accelerator. Phys. Rev. A 33, 20562064.CrossRefGoogle ScholarPubMed
Krasovitskiy, V.B. (2008). Self-Focusing of Relativistic Electron Bunches in Plasmas. New York: Nova Science.Google Scholar
Kumar, N., Pukhov, A. & Lotov, K. (2010). Self-modulation instability of a long proton bunch in plasmas. Phys. Rev. Lett. 104, 255003.CrossRefGoogle ScholarPubMed
Ng, A., Ao, T., Perror, F., Dharma-Wardana, M.W.C. & Foord, M.E. (2005). Idealized slab plasma approach for the study of warm dense matter. Laser Part. Beams 23, 527537.CrossRefGoogle Scholar
Pukhov, A., Kumar, N., Tuckmantel, T., Upadhyay, A., Lotov, K., Muggli, P., Khudik, V., Siemon, C. & Shvets, G. (2011). Phase velocity and particle injection in a self-modulated proton-driven plasma wakefield accelerator. Phys. Rev. Lett. 107, 145003.CrossRefGoogle Scholar
Roy, P.K., Yu, S.S., Eylon, S., Henestroza, E., Anders, A., Bieniosek, F.M., Greenway, W.G., Logan, B.G., Waldron, W.L., Vanecek, D.L., Welch, D.R., Rose, D.V., Davidson, R.C., Efthimion, P.C., Gilson, E.P., Sefkow, A.B. & Sharp, W.M. (2004). Results on intense beam focusing and neutralization from the neutralized beam experiment. Phys. Plasmas 11, 28902898.CrossRefGoogle Scholar
Roy, P.K., Yu, S.S., Henestroza, E., Anders, A., Bieniosek, F.M., Coleman, J., Eylon, S., Greenway, W.G., Leitner, M., Logan, B.G., Waldron, W.L., Welch, D.R., Thoma, C., Sefkow, A.B., Gilson, E.P., Efthimion, P.C. & Davidson, R.C. (2005). Drift compression of an intense neutralized ion beam. Phys. Rev. Lett. 95, 234801.CrossRefGoogle ScholarPubMed
Xie, B.-S., Aimidula, A., Niu, J.-S, Liu, J. & Yu, M.Y. (2009). Electron acceleration in the wakefield of asymmetric laser pulses. Laser Part. Beams 27, 2732.CrossRefGoogle Scholar