Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T23:30:25.389Z Has data issue: false hasContentIssue false

Stimulated Brillouin backscattering of hollow Gaussian laser beam in collisionless plasma under relativistic–ponderomotive regime

Published online by Cambridge University Press:  27 December 2016

R. Gauniyal
Affiliation:
Uttarakhand Technical University, Dehradun, Uttarakhand 248007, India
N. Ahmad
Affiliation:
Department of Physics, College of Science, UAE University, PO Box 15551 Al-Ain, United Arab Emirates
P. Rawat
Affiliation:
Department of Physics, Laser plasma Computational Laboratory, DAV (PG) College, Dehradun, Uttarakhand 248001, India
B. Gaur
Affiliation:
Department of Physics, Laser plasma Computational Laboratory, DAV (PG) College, Dehradun, Uttarakhand 248001, India
S.T. Mahmoud
Affiliation:
Department of Physics, College of Science, UAE University, PO Box 15551 Al-Ain, United Arab Emirates
G. Purohit*
Affiliation:
Department of Physics, Laser plasma Computational Laboratory, DAV (PG) College, Dehradun, Uttarakhand 248001, India
*
Address correspondence and reprint requests to: G. Purohit, Department of Physics, DAV (PG) College, Dehradun, Uttarakhand 248001, India. E-mail: gunjan75@gmail.com

Abstract

Stimulated Brillouin backscattering of an intense hollow Gaussian laser beam (HGLB) from collisionless plasma has been investigated under relativistic–ponderomotive regime. The main feature of considered hollow Gaussian laser beam is having the same power at different beam orders with null intensity at the center. Backscattered radiation is generated due to nonlinear interaction between main beam (pump beam) with pre-excited ion acoustic wave (IAW). Modified coupled equations has been set up for the beam width parameters of the main beam, ion-acoustic wave, back-scattered wave, and back reflectivity of stimulated Brillouin scattering (SBS) with the help of the Wentzel–Kramers–Brillouin approximation, fluid equations and paraxial theory approach. These coupled equations are solved analytically and numerically to study the laser intensity in the plasma, the variation of amplitude of the excited IAW and back reflectivity of SBS. The back reflectivity of SBS is found to be highly sensitive to the order of the HGLB, intensity of main laser beam, and plasma density for typical laser and plasma parameters. The focusing of main laser beam (hollow Gaussian) and IAW significantly affected the back reflectivity of SBS. The results show that the self-focusing and back reflectivity is enhanced for higher order modes of HGLB.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. – Usp. 10, 609636.Google Scholar
Amin, M.R., Capjack, C.E., Frycz, P., Rozmus, W. & Tikhonchuk, V.T. (1993). Two-dimensional studies of stimulated Brillouin scattering, filamentation, and self-focusing instabilities of laser light in plasmas. Phys. Fluids B 5, 37483764.CrossRefGoogle Scholar
Asshar-Rad, T., Gizzi, L.A., Desselberger, M. & Willi, O. (1996). Effect of filamentation of Brillouin scattering in large underdense plasmas irradiated by incoherent laser light. Phy. Rev. Lett. 76, 32423246.Google Scholar
Baldis, H.A., Villeneuve, D.M., LaFontaine, B., Enright, G.D., Labuane, C., Baton, S., Mounaix, Ph., Pesme, D., Casanova, M. & Rozmus, W. (1993). Stimulated Brillouin scattering in picosecond time scales: experiments and modeling. Phys. Fluids B 5, 33193327.Google Scholar
Baton, S.D., Amiranoff, F., Mailka, V., Modena, A., Salvati, M., Coulaud, C., Rousseaux, C., Renard, N., Mounaix, PH. & Stenz, C. (1998). Measurement of the stimulated Brillouin scattering reflectivity from a spatially smoothed laser beam in a homogeneous large scale plasma. Phys. Rev. E 57, R4895R4898.CrossRefGoogle Scholar
Baton, S.D., Rousseaux, C., Mounaix, P.H., Labaune, C., Fontaine, B., Pesme, D., Renard, N., Gary, S., Louis-Jacqet, M. & Baldis, H.A. (1994). Stimulated Brillouin scattering with a 1 ps laser pulse in a preformed underdense plasma. Phys. Rev. E 49, R3602R3605.Google Scholar
Berger, R.L., Lasinski, B.F., Langdon, A.B., Kaiser, T.B., Afeyan, B.B., Cohen, B.I., Still, C.H. & Willams, E.A. (1995). Influence of spatial and temporal laser beam smoothing on stimulated Brillouin scattering in filamentary laser light. Phys. Rev. Lett. 75, 10781081.CrossRefGoogle ScholarPubMed
Borisov, A.M., Borovskiy, A.V., Shiryaey, O.B., Korobkin, V.V. & Prokhorov, A.M. (1992). Relativistic and charge-displacement self-channeling of intense ultrashort laser pulses in plasmas. Phys. Rev. A 45, 58305845.Google Scholar
Brandi, H.S., Manus, C. & Mainfray, G. (1993 a). Relativistic self-focusing of ultraintense laser pulses in inhomogeneous underdense plasmas. Phys. Rev. E 47, 37803783.Google Scholar
Brandi, H.S., Manus, C., Mainfray, G., Lehner, T. & Bonnaud, G. (1993 b). Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. I. Paraxial approximation. Phys. Fluids B 5, 35393550.Google Scholar
Cai, Y., Lu, X. & Lin, Q. (2003). Hollow Gaussian beams and their propagation properties. Opt. Lett. 28, 10841086.Google Scholar
Eliseev, V.V., Rozmus, W. & Tikhonchuk, V.T. (1996). Effect of diffraction on stimulated Brillouin scattering from a single laser hot spot. Phys. Plasmas 3, 37543760.Google Scholar
Eliseev, V.V., Rozmus, W., Tikhonchuk, V.T. & Capjack, C.E. (1995). Stimulated Brillouin scattering and ponderomotive self-focusing from a single laser hot spot Phys. Plasmas 2, 17121724.Google Scholar
Fernández, J.C., Goldman, S.R., Kline, J.L., Dodd, E.S., Gautier, C., Grim, G.P., Hegelich, B.M., Montgomery, D.S., Lanier, N.E., Rose, H., Schmidt, D.W., Workman, J.B., Braun, D.G., Dewald, E.L., Landen, O.L., Campbell, K.M., Holder, J.P., Mackinnon, A.J., Niemann, C., Schein, J., Young, B.K., Celeste, J.R., Dixit, S.N., Eder, D.C., Glenzer, S.H., Haynam, C.A., Hinkel, D., Kalantar, D., Kamperschroer, J., Kauffman, R.L., Kirkwood, R., Koniges, A.E., Lee, F.D., Macgowan, B.J., Manes, K.R., Mcdonald, J.W., Schneider, M.B., Shaw, M.J., Suter, L.J., Wallace, R.J., Weber, F.A. & Kaae, J.L. (2006). Gas-filled hohlraum experiments at the National Ignition Facility. Phys. Plasmas 13, 056319.Google Scholar
Fuchs, J., Labaune, C., Depierreux, S., Tikhonchuk, V.T. & Baldis, H.A. (2000). Stimulated Brillouin and Raman scattering from a randomized laser beam in large inhomogeneous collisional plasmas. I. Experiment. Phys. Plasmas 7, 46594668.Google Scholar
Giulietti, A., Macchi, A., Schifano, E., Biancalana, V., Danson, C., Giulietti, D., Gizzi, L.A. & Willi, O. (1999). Stimulated Brillouin backscattering from underdense expanding plasmas in a regime of strong filamentation. Phys. Rev. E 59, 10381046.Google Scholar
Herman, R.M. & Wiggins, T.A. (1991). Production and uses of diffractionless beams. J. Opt. Soc. Am. A 8, 932942.Google Scholar
Kline, J.L., Fernández, J.C., Goldman, S.R., Braun, D., Landen, O., Niemann, C., Gautier, D.C., Hegelich, B.M., Montgomery, D.S. & Lanier, N.E. (2006). Measurements of gas filled halfraum energetics at the national ignition facility using a single quad. J. Phys. IV France 133, 919923.Google Scholar
Krall, N.A. & Trivelpiece, A.W. (1973). Principles of Plasma Physics. New York: McGraw Hill.Google Scholar
Kruer, W.L. (1988). The Physics of Laser Plasma Interactions. New York: Addison-Wesley.Google Scholar
Kruer, W.L. (1995). In Laser-Plasma Interactions 5: Inertial Confinement Fusion. Edinburgh: SUSSP Publications.Google Scholar
Labaune, C., Baldis, H.A. & Tikhonchuk, V.T. (1997). Interpretation of stimulated Brillouin scattering measurements based on the use of random phase plates. Europhys. Lett. 38, 3136.Google Scholar
Labaune, C., Lewis, K., Bandulet, H., Depierreux, S., Huller, S., Mason-Laborde, P.E., Pesme, D. & Loiseau, P. (2007). Laser-plasma interaction in the context of inertial fusion: Experiments and modeling. Eur. Phys. J. D 44, 283288.Google Scholar
Lee, H.S., Stewart, B.W., Choi, K. & Fenichel, H. (1994). Holographic nondiverging hollow beam. Phys. Rev. A 49, 49224927.Google Scholar
Lindl, J.D., Amendt, P., Berger, R.L., Gail Glendinning, S., Glenzer, S.H., Haan, S.W., Kauffman, R., Landen, O.L. & Suter, L.J. (2004). The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas 11, 339491.Google Scholar
Lindl, W.L. (1995). Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 39334024.Google Scholar
Macgowan, B.J., Afeyan, B.B., Back, C.A., Berger, R.L., Bonnaud, G., Casanova, M., Cohen, B.I., Desenne, D.E., Dubois, D.F., Dulieu, A.G., Estabrook, K.G., Fernandez, J.C., Glenzer, S.H., Hinkel, D.E., Kaiser, T.B., Kalantar, D.H., Kauffman, R.L., Kirkwood, R.K., Kruer, W.L., Langdon, A.B., Lasinski, B.F., Montgomery, D.S., Moody, J.D., Munro, D.H., Powers, L.V., Rose, H.A., Rousseaux, C., Turner, R.E., Wilde, B.H., Wilks, S.C. & Williams, E.A. (1996). Laser–plasma interactions in ignition-scale hohlraum plasmas. Phys. Plasmas 3, 20292040.CrossRefGoogle Scholar
Mahmoud, S.T. & Sharma, R.P. (2001). Relativistic self-focusing and its effect on stimulated Raman and stimulated Brillouin scattering in laser plasma interaction. Phys. Plasmas 8, 34193426.Google Scholar
Mahmoud, S.T., Sharma, R.P., Kumar, A. & Yadav, S. (1999). Effect of pump depletion and self-focusing on stimulated Brillouin scattering process in laser-plasma interactions. Phys. Plasmas 6, 927931.Google Scholar
Masson-Laborde, P.E., Huller, S., Pesme, D., Labaune, Ch., Depierreux, S., Loiseau, P. & Bandulet, H. (2014). Stimulated Brillouin scattering reduction induced by self-focusing for a single laser speckle interacting with an expanding plasma. Phys. Plasmas 21, 032703.Google Scholar
Misra, S. & Mishra, S.K. (2009). Focusing of dark hollow Gaussian electromagnetic beams in a plasma with relativistic-ponderomotive regime. Prog. Electromagn. Res. B 16, 291309.Google Scholar
Niknam, A.R., Barzegar, S. & Hashemazadeh, M. (2013). Self-focusing and stimulated Brillouin back-scattering of a long intense laser pulse in a finite temperature relativistic plasma. Phys. Plasmas 20, 122117.CrossRefGoogle Scholar
Purohit, G. & Rawat, P. (2015). Stimulated Brillouin backscattering of a ring-rippled laser beam in collisionless plasma. Laser Part. Beams 33, 499509.Google Scholar
Sharma, A., Misra, S., Mishra, S.K. & Kourakis, I. (2013). Dynamics of dark hollow Gaussian laser pulses in relativistic plasma. Phys. Rev. E 87, 063111.Google Scholar
Sharma, R.P., Sharma, P., Rajput, S. & Bhardwaj, A.K. (2009). Suppression of stimulated Brillouin scattering in laser beam hot spots. Laser Part. Beams 27, 619627.Google Scholar
Singh, A. & Walia, K. (2012). Stimulated Brillouin scattering of elliptical laser beam in collisionless plasma. Opt. Laser Technol. 44, 781787.Google Scholar
Singh, A. & Walia, K. (2013). Self-focusing of Gaussian laser beam in collisionless plasma and its effect on stimulated Brillouin scattering process. Opt. Commun. 290, 175182.Google Scholar
Singh, R.K. & Sharma, R.P. (2013 a). Stimulated Raman backscattering of filamented hollow Gaussian beams, Laser Part. Beams 31, 387394.Google Scholar
Singh, R.K. & Sharma, R.P. (2013 b) Stimulated Brillouin backscattering of filamented hollow Gaussian beams. Laser Part. Beams 31, 689696.Google Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Self-focusing of laser beams in plasmas and semiconductors. Progr. Opt. 13, 169265.Google Scholar
Sodha, M.S., Misra, S.K. & Misra, S. (2009). Focusing of dark hollow Gaussian electromagnetic beams in a plasma. Laser Part. Beams 27, 5768.Google Scholar
Sodha, M.S., Umesh, G. & Sharma, R.P. (1979). Enhanced Brillouin scattering of a Gaussian laser beam from a plasma. J. Appl. Phys. 50, 46784684.Google Scholar
Vyas, A., Singh, R.K. & Sharma, R.P. (2014). Combined effect of relativistic and ponderomotive filamentation on coexisting stimulated Raman and Brillouin scattering. Phys. Plasmas 21, 112113.Google Scholar
Wang, X. & Littman, M.G. (1993). Laser cavity for generation of variable-radius rings of light. Opt. Lett. 18, 767768.Google Scholar
Xu, X., Wang, Y. & Jhe, W. (2002). Theory of atom guidance in a hollow laser beam: Dressed-atom approach. J. Opt. Soc. Am. B 17, 10391050.Google Scholar
Yin, J., Zhu, Y., Wang, W., Wang, Y. & Jhe, W. (1998). Optical potential for atom guidance in a dark hollow laser beam. J. Opt. Soc. Am. B 15, 2533.Google Scholar
York, A.G., Milchberg, H.M., Palastro, J.P. & Antonsen, T.M. (2008). Direct acceleration of electrons in a corrugated plasma waveguide. Phys. Rev. Lett. 100, 195001.Google Scholar