Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T13:51:32.327Z Has data issue: false hasContentIssue false

On the occurrence of peroxidase and laccase activity in lichens

Published online by Cambridge University Press:  25 February 2013

Richard P. BECKETT
Affiliation:
School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, Scottsville 3209, South Africa. Email: rpbeckett@gmail.com
Farida V. MINIBAYEVA
Affiliation:
Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, PO Box 30, Kazan 420111, Russia
Christiane LIERS
Affiliation:
Unit of Environmental Biotechnology, International Graduate School of Zittau, Markt 23, 02763 Zittau, Germany

Abstract

In our earlier work, we demonstrated that the oxidases tyrosinase and laccase occur widely in lichens from the Peltigerales. Recently, we discovered the occurrence of another oxidoreductase, a heme peroxidase, in the Peltigeralean ‘jelly lichens’ Leptogium and Collema. Here we present the results of a survey of peroxidase activity in a range of lichens. In addition to the jelly lichens, strong peroxidase activity also occurs within the Peltigeralean genera Lobaria, Pseudocyphellaria and Sticta. Significant activity occurs in the cell wall, and, unlike laccase activity, peroxidase activity increases considerably following the rehydration of dry thalli. However, activity is absent from Peltigera and from the non-Peltigeralean species tested here. Electrophoretic investigation showed that lichen peroxidases are oligomeric. Possible roles for peroxidases in lichen biology are discussed.

Type
Articles
Copyright
Copyright © British Lichen Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldrian, P. (2008) Enzymes of saprotrophic basidiomycetes. British Mycological Society Symposia Series 28: 1941.CrossRefGoogle Scholar
Barynin, V. V., Whittaker, M. M., Antonyuk, S. V., Lamzin, V. S., Harrison, P. M., Artymiuk, P. J. & Whittaker, J. W. (2001) Crystal structure of manganese catalase from Lactobacillus plantarum . Structure 9: 725738.CrossRefGoogle ScholarPubMed
Beckett, R. P. & Minibayeva, F. V. (2003) Wounding induces a burst of extracellular superoxide production in Peltigera canina . Lichenologist 35: 8789.CrossRefGoogle Scholar
Beckett, R. P., Minibayeva, F. V. & Liers, C. (2012) Occurrence of high tyrosinase activity in the non-Peltigeralean lichen Dermatocarpon miniatum (L.) W. Mann. Lichenologist 44: 827832.CrossRefGoogle Scholar
Chelikani, P., Fita, I. & Loewen, P. C. (2004) Diversity of structures and properties among catalases. Cellular and Molecular Life Sciences 61: 192208.CrossRefGoogle ScholarPubMed
Chen, J., Blume, H. P. & Beyer, L. (2000) Weathering of rocks induced by lichen colonization – a review. Catena 39: 121146.CrossRefGoogle Scholar
de los Ríos, A., Ramírez, R. & Estévez, P. (1997) Production of several isoforms of ß-1, 4-glucanase by the cyanolichen Peltigera canina . Physiologia Plantarum 100: 159164.CrossRefGoogle Scholar
Eggert, C., Temp, U., Dean, J. F. & Eriksson, K. E. (1996) A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Letters 391: 144148.CrossRefGoogle ScholarPubMed
Estévez, M. P. (1985) The synthesis of plant cell wall polysaccharide degrading enzymes by lichens. In Surface Physiology of Lichens (Vicente, C., Brown, D. H. & Legaz, M. E., eds): 115126. Madrid: Universidad Complutense de Madrid.Google Scholar
Gómez-Toribio, V., García-Martín, A. B., Martínez, M. J., Martínez, Á. T. & Guillén, F. (2009 a) Enhancing the production of hydroxyl radicals by Pleurotus eryngii via quinone redox cycling for pollutant removal. Applied and Environmental Microbiology 75: 39543962.Google Scholar
Gómez-Toribio, V., García-Martín, A. B., Martínez, M. J., Martínez, Á. T. & Guillén, F. (2009 b) Induction of extracellular hydroxyl radical production by white-rot fungi through quinone redox cycling. Applied and Environmental Microbiology 75: 39443953.CrossRefGoogle ScholarPubMed
Guillén, F., Munoz, C., Gómez-Toribio, V., Martínez, A. T. & Martínez, M. J. (2000) Oxygen activation during oxidation of methoxyhydroquinones by laccase from Pleurotus eryngii . Applied and Environmental Microbiology 66: 170175.Google Scholar
Hawksworth, D. (2005) To be or not to be a lichen. Nature 433: 468468.CrossRefGoogle ScholarPubMed
Hofrichter, M., Ullrich, R., Pecyna, M. J., Liers, C. & Lundell, T. (2010) New and classic families of secreted fungal heme peroxidases. Applied Microbiology and Biotechnology 87: 871897.CrossRefGoogle ScholarPubMed
Kranner, I., Zorn, M., Turk, B., Wornik, S., Beckett, R. P. & Batic, F. (2003) Biochemical traits of lichens differing in relative desiccation tolerance. New Phytologist 160: 167176.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680685.CrossRefGoogle ScholarPubMed
Laufer, Z., Beckett, R. P. & Minibayeva, F. V. (2006) Co-occurrence of the multicopper oxidases tyrosinase and laccase in lichens in sub-order Peltigerineae. Annals of Botany 98: 10351042.CrossRefGoogle ScholarPubMed
Liers, C., Ullrich, R., Hofrichter, M., Minibayeva, F. V. & Beckett, R. P. (2011) Oxidoreductases from lichenized ascomycetes: purification and characterization of a heme-peroxidase from Leptogium saturninum that oxidizes high-redox potential substrates. Fungal Genetics and Biology 48: 11391145.Google Scholar
Martinez, D., Challacombe, J., Morgenstern, I., Hibbett, D., Schmoll, M., Kubicek, C. P., Ferreira, P., Ruiz-Duenas, F. J., Martinez, A. T., Kersten, P., et al. (2009) Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion. Proceedings of the National Academy of Sciences of the United States of America 106: 19541959.CrossRefGoogle ScholarPubMed
Morgenstern, I., Klopman, S. & Hibbett, D. S. (2008) Molecular evolution and diversity of lignin degrading heme peroxidases in the Agaricomycetes. Journal of Molecular Evolution 66: 243257.CrossRefGoogle ScholarPubMed
Ogola, H. J., Kamiike, T., Hashimoto, N., Ashida, H., Ishikawa, T., Shibata, H. & Sawa, Y. (2009) Molecular characterization of a novel peroxidase from the cyanobacterium Anabaena sp. strain PCC 7120. Applied and Environmental Microbiology 75: 75097518.Google Scholar
Passardi, F., Cosio, C., Penel, C. & Dunand, C. (2005) Peroxidases have more functions than a Swiss army knife. Plant Cell Reports 24: 255265.CrossRefGoogle ScholarPubMed
Weissman, L., Garty, J. & Hochman, A. (2005) Rehydration of the lichen Ramalina lacera results in production of reactive oxygen species and nitric oxide and a decrease in antioxidants. Applied and Environmental Microbiology 71: 21212129.CrossRefGoogle Scholar
Welinder, K. (1992) Plant peroxidases: structure–function relationships. In Plant Peroxidases. Topics and Detailed Literature on Molecular, Biochemical and Physiological Aspects (Penel, C., Gaspar, T. & Greppin, H., eds): 124. Geneva: Université de Genève.Google Scholar
Yagüe, E. & Estévez, M. P. (1988 a) Purification and characterization of ß-1, 4-glucanase from Evernia prunastri . European Journal of Biochemistry 175: 627632.CrossRefGoogle Scholar
Yagüe, E. & Estévez, M. P. (1988 b) Regulation of ß-1, 4-glucanase and ß-glucosidase production by glucose in Evernia prunastri . Journal of Plant Physiology 133: 539544.Google Scholar
Zagoskina, N. V., Nikolaeva, T. N., Lapshin, P. V., Zavarzina, A. C. & Zavarzin, A. A. (2011) On the phenol composition of various species of lichens from the Kola Peninsula. Chemistry of Plant Raw Materials 4: 245249.Google Scholar
Zavarzina, A. G. & Zavarzin, A. A. (2006) Laccase and tyrosinase activities in lichens. Microbiology 75: 546556.Google Scholar
Zubieta, C., Joseph, R., Krishna, S. S., McMullan, D., Kapoor, M., Axelrod, H. L., Miller, M. D., Abdubek, P., Acosta, C., Astakhova, T., et al. (2007) Identification and structural characterization of heme binding in a novel dye-decolorizing peroxidase, TyrA. Proteins: Structure Function and Bioinformatics 69: 234243.Google Scholar