Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-14T06:56:03.999Z Has data issue: false hasContentIssue false

New methods for mycocalicioid fungi

Published online by Cambridge University Press:  20 January 2021

Hanna Tuovila*
Affiliation:
Finnish Museum of Natural History LUOMUS, P.O. Box 7, FI-00014 University of Helsinki, Finland
Seppo Huhtinen
Affiliation:
Herbarium, Biodiversity Unit, FI-20014 University of Turku, Finland
*
Author for correspondence: Hanna Tuovila. E-mail: hanna.s.tuovila@gmail.com

Abstract

The identification of mycocalicioid species continues to be based on morphological and chemical characters, even though molecular data and substratum preferences can provide many important insights into specific problems associated with species delimitation and other taxonomic challenges. Our results reinforce the usefulness of many morphological and chemical characteristics and reveal several new features that can be used for both species delimitation and identification. Given the fact that mycocalicioid species can rarely be distinguished by just a single character, combinations of different chemical and morphological characteristics must be used. Additional characteristics must also be sought, including those that have previously been overlooked or still need to be discovered. As a result of this search, we introduce a new term, pseudohemiamyloid, for a reversible, KOH resistant/enhanced reaction in Lugol's solution.

Type
Standard Papers
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of the British Lichen Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baral, H-O (1987) Lugol's solution/IKI versus Melzer's reagent: hemiamyloidity, a universal feature of the ascus wall. Mycotaxon 29, 399450.Google Scholar
Baral, H-O (1992) Vital versus herbarium taxonomy: morphological differences between living and dead cells of ascomycetes, and their taxonomic implications. Mycotaxon 44, 333390.Google Scholar
Beimforde, C, Tuovila, H, Schmidt, AR, Lee, WG, Gube, M and Rikkinen, J (2017) Chaenothecopsis schefflerae (Ascomycota: Mycocaliciales): a widespread fungus on semi-hardened exudates of endemic New Zealand Araliaceae. New Zealand Journal of Botany 55, 387406.CrossRefGoogle Scholar
Bonar, L (1971) A new Mycocalicium on scarred Sequoia in California. Madroño 21, 6269.Google Scholar
Cotterill, FPD, Taylor, PJ, Gippoliti, S, Bishop, JM and Groves, CP (2014) Why one century of phenetics is enough: response to ‘Are there really twice as many bovid species as we thought?’ Systematic Biology 63, 819–32.CrossRefGoogle Scholar
Del-Prado, R, Ferencová, Z, Armas-Crespo, V, Amo de Paz, G, Cubas, P and Crespo, A (2007) The arachiform vacuolar body: an overlooked shared character in the ascospores of a large monophyletic group within Parmeliaceae (Xanthoparmelia clade, Lecanorales). Mycological Research 111, 685692.CrossRefGoogle Scholar
De Queiroz, K (2007) Species concepts and species delimitation. Systematic Biology 56, 879886.CrossRefGoogle ScholarPubMed
Eckblad, F-E (1968) The genera of operculate discomycetes. A re-evaluation of their taxonomy, phylogeny and nomenclature. Nytt Magasin for Botanik 15, 1191.Google Scholar
Garrido-Benavent, I and Pérez-Ortega, S (2015) Unravelling the diversity of European Caliciopsis (Coryneliaceae, Ascomycota): Caliciopsis valentina sp. nov. and C. beckhausii comb. nov., with a worldwide key to Caliciopsis. Mycological Progress 14, 10.CrossRefGoogle Scholar
Geiser, DM, Gueidan, C, Miadlikowska, J, Lutzoni, F, Hofstetter, V, Fraker, E, Schoch, CL, Tibell, L, Untereiner, WA, Gueidan, C, et al. (2006) Eurotiomycetidae and Chaetothyriomycetidae. Mycologia 98, 10531064.CrossRefGoogle ScholarPubMed
Harder, CB, Lodge, DJ, Petersen, RH, Hughes, KW, Blanco, JC, Frøslev, TG and Læssøe, T (2011) Amyloidity is not diagnostic for species in the Mycena pearsoniana complex (Mycena sectio Calodontes). Mycological Progress 11, 725732.CrossRefGoogle Scholar
Hawksworth, DL (1980) Two little known members of the Mycocaliciaceae on polypores. Transactions of the British Mycological Society 74, 650651.CrossRefGoogle Scholar
Hawksworth, DL, Aguirre-Hudson, B and Ainsworth, AM (2014) Sphinctrina tigillaris, an overlooked species of Chaenothecopsis growing on Perenniporia meridionalis, a polypore new to the UK. Lichenologist 46, 729735.CrossRefGoogle Scholar
Heller, R, Frandsen, P, Lorenzen, ED and Siegismund, HR (2013) Are there really twice as many bovid species as we thought? Systematic Biology 62, 490493.CrossRefGoogle ScholarPubMed
Heller, R, Frandsen, P, Lorenzen, ED and Siegismund, HR (2014) Is diagnosability an indicator of speciation? Response to ‘Why one century of phenetics is enough’. Systematic Biology 63, 833837.CrossRefGoogle Scholar
Hibbett, DS, Binder, M, Bischoff, JF, Blackwell, M, Cannon, PF, Eriksson, OE, Huhndorf, S, James, T, Kirk, PM, Lücking, R, et al. (2007) A higher-level phylogenetic classification of the Fungi. Mycological Research 111, 509547.CrossRefGoogle ScholarPubMed
Kalb, K and Hafellner, J (1992) Bemerkenswerte Flechten und lichenicole Pilze von der Insel Madeira. Herzogia 9, 45102.Google Scholar
Keissler, K von (1938) Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Leipzig: Akademische Verlagsgesellschaft M.B.H.Google Scholar
Lettau, G (1940) Flechten aus Mitteleuropa III und IV. Repertorium Specierum Novarum Regni Vegetabilis 1, 177202.Google Scholar
Löfgren, O and Tibell, L (1979) Sphinctrina in Europe. Lichenologist 11, 109137.CrossRefGoogle Scholar
Nádvornik, J (1940) Systematische Übersicht der mitteleuropäischen Arten der Flechtenfamilie Caliciaceae. Teil I. Preslia 18–19, 113129.Google Scholar
Prieto, M and Wedin, M (2013) Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS ONE 8, e65576.CrossRefGoogle Scholar
Prieto, M, Baloch, E, Tehler, A and Wedin, M (2013) Mazaedium evolution in the Ascomycota (Fungi) and the classification of mazaediate groups of formerly unclear relationship. Cladistics 29, 296308.CrossRefGoogle Scholar
Rikkinen, J (1999) Two new species of resinicolous Chaenothecopsis (Mycocaliciaceae) from western North America. Bryologist 102, 366369.CrossRefGoogle Scholar
Rikkinen, J, Tuovila, H, Beimforde, C, Seyfullah, LJ, Perrichot, V and Schmidt, AR (2014) Chaenothecopsis neocaledonica sp. nov.: the first resinicolous mycocalicioid fungus from an araucarian conifer. Phytotaxa 173, 4960.CrossRefGoogle Scholar
Samuels, GJ and Buchanan, DE (1983) Ascomycetes of New Zealand 5. Mycocalicium schefflerae sp. nov., its ascal ultrastructure and Phialophora anamorph. New Zealand Journal of Botany 21, 163170.CrossRefGoogle Scholar
Schmidt, A (1970) Anatomisch-taxonomische Untersuchungen an europäischen Arten der Flechtenfamilie Caliciaceae. Mitteilungen aus dem Institut für Allgemeine Botanik in Hamburg 13, 111166.Google Scholar
Schmitt, I (2011) Fruiting body evolution in the Ascomycota: a molecular perspective integrating lichenized and non-lichenized groups. In Pöggeler, S and Wöstermeyer, J (eds), Evolution of Fungi and Fungal-Like Organisms. Berlin, Heidelberg: Springer-Verlag, pp. 187204.CrossRefGoogle Scholar
Schoch, CL, Sung, G-H, López-Giráldez, F, Townsend, JP, Miadlikowska, J, Hofstetter, V, Robbertse, B, Matheny, PB, Kauff, F, Wang, Z, et al. (2009) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology 58, 224239.CrossRefGoogle ScholarPubMed
Selva, S and Tibell, L (1999) Lichenized and non-lichenized calicioid fungi from North America. Bryologist 102, 377397.CrossRefGoogle Scholar
Selva, S and Tuovila, H (2016) Two new resinicolous mycocalicioid fungi from the Acadian Forest: one new to science, the other new to North America. Bryologist 119, 417422.CrossRefGoogle Scholar
Szatala, Ö (1925) Adatok Magyarirszág zúzmóflorájának ismeretéhez. Magyar Botanikai Lapok 24, 4383.Google Scholar
Tibell, L (1982) Caliciales of Costa Rica. Lichenologist 14, 219254.CrossRefGoogle Scholar
Tibell, L (1984) A reappraisal of the taxonomy of Caliciales. Beiheft zur Nova Hedwigia 79, 597713.Google Scholar
Tibell, L (1987) Typification of names of infrageneric taxa described by Acharius and placed by him in Caliciales. Annales Botanici Fennici 24, 257280.Google Scholar
Tibell, L (1991) Revision of some taxa of Caliciales described by W. Nylander. Annales Botanici Fennici 28, 117121.Google Scholar
Tibell, L (1996) Phaeocalicium (Mycocaliciaceae, Ascomycetes) in Northern Europe. Annales Botanici Fennici 33, 205221.Google Scholar
Tibell, L (1997) Anamorphs in mazaediate lichenized fungi and the Mycocaliciaceae (“Caliciales s. lat.”). Symbolae Botanicae Upsalienses 32(1), 291322.Google Scholar
Tibell, L (1998) Crustose mazaediate lichens and the Mycocaliciaceae in temperate South America. Bibliotheca Lichenologica 71, 1107.Google Scholar
Tibell, L (1999) Calicioid lichens and fungi. In Ahti, T (ed.), Nordic Lichen Flora, Vol. I. Uppsala: Nordic Lichen Society, pp. 2094.Google Scholar
Tibell, L and Ryman, K (1995) Revision of species of Chaenothecopsis with short stalks. Nova Hedwigia 60, 199218.Google Scholar
Tibell, L and Titov, A (1995) Species of Chaenothecopsis and Mycocalicium (Caliciales) on exudate. Bryologist 98, 377397.CrossRefGoogle Scholar
Tibell, L and Vinuesa, M (2005) Chaenothecopsis in a molecular phylogeny based on nuclear rDNA ITS and LSU sequences. Taxon 54, 427442.CrossRefGoogle Scholar
Titov, A (1994) A new Stenocybe species from Central Asia. Acta Botanica Fennica 150, 197199.Google Scholar
Titov, A (2006) Mycocalicioid Fungi (the Order Mycocaliciales) of the Holarctic. Moscow: KMK Scientific Press.Google Scholar
Titov, A and Tibell, L (1993) Chaenothecopsis in the Russian Far East. Nordic Journal of Botany 13, 313329.CrossRefGoogle Scholar
Tuckerman, E (1872) Genera Lichenum: an Arrangement of the North American Lichens. Amherst: Edward Nelson.Google Scholar
Tuovila, H (2013) Sticky business – diversity and evolution of Mycocaliciales (Ascomycota) on plant exudates. Publications in Botany from the University of Helsinki 44, 1142.Google Scholar
Tuovila, H, Cobbinah, JR and Rikkinen, J (2011 a) Chaenothecopsis khayensis, a new resinicolous calicioid fungus on African mahogany. Mycologia 103, 610615.CrossRefGoogle ScholarPubMed
Tuovila, H, Larsson, P and Rikkinen, J (2011 b) Three resinicolous North American species of Mycocaliciales in Europe with a re-evaluation of Chaenothecopsis oregana Rikkinen. Karstenia 51, 3749.CrossRefGoogle Scholar
Tuovila, H, Schmidt, AR, Beimforde, C, Dörfelt, H, Grabenhorst, H and Rikkinen, J (2013) Stuck in time – a new Chaenothecopsis species with proliferating ascomata from Cunninghamia resin and its fossil ancestors in European amber. Fungal Diversity 58, 199213.CrossRefGoogle Scholar
Tuovila, H, Davey, ML, Yan, L, Huhtinen, S and Rikkinen, J (2014) New resinicolous Chaenothecopsis species from China. Mycologia 106, 9891003.CrossRefGoogle ScholarPubMed
Vainio, E (1890) Étude sur la classification naturele et la morphologie des lichenes du Brésil. Pars secunda. Acta Societas Pro Fauna et Flora Fennica 7, 1256.Google Scholar
Vinuesa Navarro, M de la Á (2002) Estudios filogenéticos en la familia ‘Mycocaliciaceae’ (Mycocaliciales, Ascomycota). Ph.D. thesis, Universidad Complutense de Madrid.Google Scholar
Vinuesa, M de Los Á, Sanches-Puelles, JM and Tibell, L (2001) Intraspecific variation in Mycocalicium subtile (Mycocaliciaceae) elucidated by morphology and the sequences of the ITS1-5.8S-ITS2 region of rDNA. Mycological Research 105, 323330.CrossRefGoogle Scholar
Zachos, FE and Lovari, S (2013) Taxonomic inflation and the poverty of the Phylogenetic Species Concept – a reply to Gippoliti and Groves. Hystrix 24, 13.Google Scholar