Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-10T12:12:28.914Z Has data issue: false hasContentIssue false

Testing morphology-based delimitation of Vulpicida juniperinus and V. tubulosus (Parmeliaceae) using three molecular markers

Published online by Cambridge University Press:  08 October 2012

Kristiina MARK
Affiliation:
University of Tartu, Institute of Ecology and Earth Sciences, Department of Botany, Lai 38, 51005 Tartu, Estonia
Lauri SAAG*
Affiliation:
Estonian Biocentre, Riia 23b, 51010 Tartu, Estonia. Email: lauri.saag@ut.ee
Andres SAAG
Affiliation:
University of Tartu, Institute of Ecology and Earth Sciences, Department of Botany, Lai 38, 51005 Tartu, Estonia
Arne THELL
Affiliation:
The Biological Museums, Lund University, Lund, Sweden
Tiina RANDLANE
Affiliation:
University of Tartu, Institute of Ecology and Earth Sciences, Department of Botany, Lai 38, 51005 Tartu, Estonia

Abstract

The delimitation of two morphologically similar and not easily separable Vulpicida species, V. juniperinus and V. tubulosus, is analyzed using nuclear ITS and Mcm7, and mitochondrial SSU DNA sequences. Seventy-nine Vulpicida specimens, most from the two focal taxa, are included in the three-locus gene tree. The results from Bayesian and parsimony analyses are presented. There are strong conflicts between the single locus gene trees. Vulpicida juniperinus and V. tubulosus are divided into two clearly distinguished groups in the ITS and concatenated B/MCMC tree. However, these species are mixed in both clades, appearing polyphyletic. Currently accepted V. juniperinus and V. tubulosus are not distinct according to the loci studied. Vulpicida pinastri appears monophyletic based on the available sequences.

Type
Research Article
Copyright
Copyright © British Lichen Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boni, M. F., Posada, D. & Feldman, M. W. (2007) An exact nonparametric method for inferring mosaic structure in sequence triplets. Genetics 176: 10351047.CrossRefGoogle ScholarPubMed
Crespo, A. & Pérez-Ortega, S. (2009) Cryptic species and species pairs in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. Anales del Jardín Botánico de Madrid 66: 7181.CrossRefGoogle Scholar
Crespo, A., Lumbsch, H. T., Mattsson, J.-E., Blanco, O., Divakar, P. K., Articus, K., Wiklund, E., Bawingan, P. A. & Wedin, M. (2007) Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. Molecular Phylogenetics and Evolution 44: 812824.CrossRefGoogle ScholarPubMed
Douady, C. J., Delsuc, F., Boucher, Y., Doolittle, W. F. & Douzery, E. J. P. (2003) Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Molecular Biology and Evolution 20: 248254.CrossRefGoogle ScholarPubMed
Felsenstein, J. (1985) Phylogenies and the Comparative Method. American Naturalist 125: 115.CrossRefGoogle Scholar
Funk, D. J. & Omland, K. E. (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution and Systematics 34: 397423.CrossRefGoogle Scholar
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.CrossRefGoogle Scholar
Gibbs, M. J., Armstrong, J. S. & Gibbs, A. J. (2000) Sister-Scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16: 573582.CrossRefGoogle ScholarPubMed
Grube, M. & Kroken, S. (2000) Molecular approaches and the concept of species and species complexes in lichenized fungi. Mycological Research 104: 12841294.CrossRefGoogle Scholar
Hudson, R. R. & Coyne, J. A. (2002) Mathematical consequences of the genealogical species concept. Evolution 56: 15571565.Google ScholarPubMed
Huelsenbeck, J. P., Rannala, B. & Masly, J. P. (2000) Accommodating phylogenetic uncertainty in evolutionary studies. Science 288: 23492350.CrossRefGoogle ScholarPubMed
Katoh, K. & Toh, H. (2008) Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9: 286298.CrossRefGoogle ScholarPubMed
Knowles, L. L. & Carstens, B. C. (2007) Delimiting species without monophyletic gene trees. Systematic Biology 56: 887895.CrossRefGoogle ScholarPubMed
Leavitt, S. D., Fankhauser, J. D., Leavitt, D. H., Porter, L. D., Johnson, L. A. & St. Clair, L. L. (2011) Complex patterns of speciation in cosmopolitan “rock posy” lichens – discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma species-complex (Lecanoraceae, Ascomycota). Molecular Phylogenetics and Evolution 59: 587602.CrossRefGoogle Scholar
Lumbsch, H. & Leavitt, S. (2011) Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Diversity 50: 5972.CrossRefGoogle Scholar
Maddison, D. R. & Maddison, W. P. (2000) MacClade 4: Analysis of Phylogeny and Character Evolution. Version 4.0. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Martin, D. & Rybicki, E. (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16: 562563.CrossRefGoogle ScholarPubMed
Martin, D. P., Posada, D., Crandall, K. A. & Williamson, C. (2005 a) A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Research and Human Retroviruses 21: 98102.CrossRefGoogle ScholarPubMed
Martin, D. P., Williamson, C. & Posada, D. (2005 b) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21: 260262.CrossRefGoogle ScholarPubMed
Mattsson, J.-E. (1993) A monograph of the genus Vulpicida (Parmeliaceae, Ascomycetes). Opera Botanica 119: 161.Google Scholar
Mattsson, J.-E. & Lai, M. J. (1993) Vulpicida, a new genus in Parmeliaceae (Lichenized Ascomycetes). Mycotaxon 46: 425428.Google Scholar
Mattsson, J.-E. & Wedin, M. (1998) Phylogeny of the Parmeliaceae–DNA data versus morphological data. Lichenologist 30: 463472.CrossRefGoogle Scholar
Maynard Smith, J. (1992) Analyzing the mosaic structure of genes. Journal of Molecular Evolution 34: 126129.Google Scholar
Müller, K. (2005) SeqState: Primer design and sequence statistics for phylogenetic DNA datasets. Applied Bioinformatics 4: 6569.CrossRefGoogle ScholarPubMed
Müller, K. (2006) Incorporating information from length-mutational events into phylogenetic analysis. Molecular Phylogenetics and Evolution 38: 667676.CrossRefGoogle ScholarPubMed
Nelsen, M. P., Chavez, N., Sackett-Hermann, E., Thell, A., Randlane, T., Divakar, P. K., Rico, V. J. & Lumbsch, H. T. (2011) The cetrarioid core group revisited (Parmeliaceae, Lecanorales). Lichenologist 43: 115.CrossRefGoogle Scholar
Nylander, J. A. A. (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.Google Scholar
Orange, A., James, P. W. & White, F. J. (2001) Microchemical Methods for the Identification of Lichens. London: British Lichen Society.Google Scholar
Padidam, M., Sawyer, S. & Fauquet, C. M. (1999) Possible emergence of new geminiviruses by frequent recombination. Virology 265: 218225.CrossRefGoogle ScholarPubMed
Posada, D. & Crandall, K. A. (2001) Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proceedings of the National Academy of Sciences, USA 98: 1375713762.CrossRefGoogle ScholarPubMed
Rambaut, A. (2009) FigTree v1.3.1. Program distributed by the author. Institute of Evolutionary Biology, University of Edinburgh.Google Scholar
Randlane, T. & Saag, A. (2005) Distribution patterns of primary and secondary species in the genus Vulpicida. Folia Cryptogamica Estonica 41: 8996.Google Scholar
Randlane, T., Saag, A. & Thell, A. (1997) A second updated world list of cetrarioid lichens. Bryologist 100: 109122.CrossRefGoogle Scholar
Randlane, T., Saag, A., Thell, A. & Ahti, T. (2010) Third world list of cetrarioid lichens. Ver. 5 May 2010. http://esamba.bo.bg.ut.ee/checklist/cetrarioid-checklist/home.phpGoogle Scholar
Ronquist, F. & Huelsenbeck, J. P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 15721574.CrossRefGoogle ScholarPubMed
Schmitt, I., Crespo, A., Divakar, P. K., Fankhauser, J. D., Herman-Sackett, E., Kalb, K., Nelsen, M. P., Nelson, N. A., Rivas-Plata, E., Shimp, A. D. et al. (2009) New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia 23: 3540.CrossRefGoogle ScholarPubMed
Swofford, D. L. (2002) PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods) Version 4.0 b10. Sunderland, Massachusetts: Sinauer Associates.Google Scholar
Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S. & Fisher, M. C. (2000) Phylogenetic species recognition and species concepts in Fungi. Fungal Genetics and Biology 31: 2132.CrossRefGoogle ScholarPubMed
Thell, A. & Miao, V. (1999) Phylogenetic analysis of of ITS and group I intron sequences from European and North American samples of cetrarioid lichens. Annales Botanici Fennici 35: 275286.Google Scholar
Thell, A., Stenroos, S., Feuerer, T., Kärnefelt, I., Myllys, L. & Hyvönen, J. (2002) Phylogeny of cetrarioid lichens (Parmeliaceae) inferred from ITS and b-tubulin sequences, morphology, anatomy and secondary chemistry. Mycological Progress 1: 335354.CrossRefGoogle Scholar
Thell, A., Högnabba, F., Elix, J. A., Feuerer, T., Kärnefelt, I., Myllys, L., Randlane, T., Saag, A., Stenroos, S., Ahti, T. et al. (2009) Phylogeny of the cetrarioid core (Parmeliaceae) based on five genetic markers. Lichenologist 41: 489511.CrossRefGoogle Scholar
Thell, A., Ahti, T. & Randlane, T. (2011) Vulpicida. In Nordic Lichen Flora 4. (Thell, A. & Moberg, R., eds): 128130. Uppsala: Nordic Lichen Society.Google Scholar
Wedin, M., Döring, H. & Mattsson, J.-E. (1999) A multi-gene study of the phylogenetic relationships of the Parmeliaceae. Mycological Research 103: 11851192.CrossRefGoogle Scholar
Wedin, M., Westberg, M., Crewe, A. T., Tehler, A. & Purvis, O. W. (2009) Species delimitation and evolution of metal bioaccumulation in the lichenized Acarospora smaragdula (Ascomycota, Fungi) complex. Cladistics 25: 161172.CrossRefGoogle ScholarPubMed
Weiller, G. F. (1998) Phylogenetic profiles: a graphical method for detecting genetic recombinations in homologous sequences. Molecular Biology and Evolution 15: 326335.CrossRefGoogle ScholarPubMed
White, T. J., Bruns, T., Lee, S. & Taylor, J. W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications (Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J., eds): 315322. San Diego: Academic Press.Google Scholar
Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming Ascomycetes. Lichenologist 31: 511516.CrossRefGoogle Scholar