Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T14:02:27.908Z Has data issue: false hasContentIssue false

Record of Lamellibrachia sp. (Annelida: Siboglinidae: Vestimentifera) from a deep shipwreck in the western Mediterranean Sea (Italy)

Published online by Cambridge University Press:  01 April 2011

Maria Cristina Gambi*
Affiliation:
Stazione Zoologica ‘Anton Dohrn’, Laboratory of Functional and Evolutionary Ecology, Villa Comunale, Napoli, Italy
Anja Schulze
Affiliation:
Department of Marine Biology, Texas A & M University at Galveston, Texas, USA
Ezio Amato
Affiliation:
ISPRA, via di Casalotti, Roma, Italy
*
Correspondence should be addressed to: M.C. Gambi, Stazione Zoologica ‘Anton Dohrn’, Laboratory of Functional and Evolutionary Ecology, Villa Comunale, Napoli, Italy email: gambimc@szn.it
Get access

Abstract

The siboglinid tubeworm, Lamellibrachia sp. (Annelida: Vestimentifera) has recently been described and reported from various sites in the eastern basin and in a single site in the western basin of the Mediterranean Sea. Here we report a further record of Lamellibrachia sp. in the western Mediterranean, where these giant worms were sampled—by the grabbers of a working class ROV—from the shipwreck of the liner ‘Catania’, sunk in 1917 at 490 m depth off the coast of Cetraro (Calabria, southern Tyrrhenian Sea, Italy). Twenty-seven entire tubes were collected ranging from 23 to 60 cm in length and from 0.6 to 13 mm in diameter. Clear annulations were present near the tube openings. Only two of the tubes contained specimens of Lamellibrachia, both lacking most of the posterior portion (including the opisthosoma); the obturaculum was 13 mm long in both specimens; three sheath lamellae and eight branchial lamellae occurred in one specimen, and six and 14 in the other. DNA analysis through COI sequencing suggests a close similarity with specimens collected in the eastern Mediterranean (GenBank EU046616) and belonging to a new species recently described. It needs still to be clarified which type of energy source the obligate symbiotic bacteria of these worms may use for nutrition, since no sulphur emissions can be documented on and around the shipwreck. The ‘Catania’ contained some wooden structures and was transporting cotton balls and oil seeds, so the symbiotic bacteria may rely on degradation of these materials. This record stresses the importance of shipwreck as a possible stepping stone habitat for the large scale dispersion of Vestimentifera.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bayon, G., Loncke, L., Dupré, S., Caprais, J.-C., Ducassou, E., Duperron, S., Etoubleau, J., Foucher, J.-P., Fouquet, Y., Gontharet, S., Henderson, G.M., Huguen, C., Klaucke, I., Masde, J., Migeon, S., Olu-Le Roy, K., Ondreas, H., Pierre, C., Sibuet, M., Stadnitskaia, A. and Woodside, J. (2009) Multidisciplinary investigation on fluid seepage on an unstable margin: the case of the Central Nile deep sea fan. Marine Geology 261, 92104.CrossRefGoogle Scholar
Bianchi, C.N. and Morri, C. (2000) Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Marine Pollution Bulletin 40, 367376.CrossRefGoogle Scholar
Dando, P.R., Southward, A.J., Southward, E.C., Crawford, A. and Crawford, M. (1992) Shipwrecked tube worms. Nature 356, 667.CrossRefGoogle Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. and Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294295.Google ScholarPubMed
Gardiner, S.L. and Hourdez, S. (2003) On the occurrence of the vestimentiferan tube worm Lamellibrachia luymesi van der Land and Nørrevang, 1975 (Annelida, Pogonophora) in hydrocarbon seep communities in the Gulf of Mexico. Proceedings of the Biological Society of Washington 116, 380394.Google Scholar
Hilário, A., Comas, M.C., Azevedo, L., Pinheiro, L., Ivanov, M.K. and Cunha, M.R.(in press)First record of a Vestimentifera (Polychaeta: Siboglinidae) from chemosynthetic habitats in the western Mediterranean Sea–biogeographical implications and future exploration. Deep-Sea Research I doi:10.1016/j.dsr.2010.11.009.Google Scholar
Hilário, A. and Cunha, M.R. (2008) On some frenulate species (Annelida: Polychaeta: Siboglinidae) from mud volcanoes in the Gulf of Cadiz (NE Atlantic). Scientia Marina 72, 361371.Google Scholar
Hilário, A., Johnson, S.B., Cunha, M.R. and Vrijenhoek, R.C. (2010) High diversity of frenulates (Polychaeta: Siboglinidae) in the Gulf of Cadiz mud volcanoes: a DNA taxonomy analysis. Deep-Sea Research I 57, 143150.CrossRefGoogle Scholar
Hughes, D.J. and Crawford, M. (2008) A new record of the vestimentiferan Lamellibrachia sp. (Polychaeta, Siboglinidae) from a deep shipwreck in the eastern Mediterranean. Marine Biodiversity Records 1, e21.CrossRefGoogle Scholar
Kojima, S., Ohta, S., Yamamoto, T., Miura, T., Fujiwara, Y. and Hashimoto, J. (2001) Molecular taxonomy of vestimentiferans in the western Pacific and their phylogenetic relationship to species of the eastern Pacific. I. Family Lamellibrachiidae. Marine Biology 139, 211219.Google Scholar
Kojima, S., Ohta, S., Yamamoto, T., Yamaguchi, T., Miura, T., Fujiwara, Y., Fujikura, K. and Hashimoto, J. (2003) Molecular taxonomy of vestimentiferans of the Western Pacific and their phylogenetic relationships to species of the Eastern Pacific. III. Alaysia-like species and relationships among families. Marine Biology 142, 625635.CrossRefGoogle Scholar
Kojima, S., Segawa, R. and Ohta, S. (1997) Molecular phylogeny of vestimentiferans collected around Japan, revealed by the nucleotide sequences of mitochondrial DNA. Marine Biology 127, 7513.CrossRefGoogle Scholar
Kojima, S., Watanabe, H., Tsuchida, S., Fujikura, K., Rowden, A.A., Takai, K. and Miura, T. (2006) Phylogenetic relationships of a hydrothermal vent worm (Lamellibrachia juni) from three hydrothermal vent fields in the South Pacific. Journal of the Marine Biological Association of the United Kingdom 86, 13571361.CrossRefGoogle Scholar
Land, J.van, der and Nørrevang, A. (1975) The systematic position of Lamellibrachia (Annelida, Vestimentifera). Zeitschrift für Zoologische Systematik und Evolutionforschung Soderehft 1975, 86101.Google Scholar
Mane-Garzón, F. and Montero, R. (1986) Sobre una nueva forma de verme tubicola Lamellibrachia victori n. sp. (Vestimentifera), proposition de un nuevo phylum: Mesoneurophora. Revista de Biologia de Uruguay 8, 128.Google Scholar
McMullin, E.R., Hourdez, S., Schaeffer, S.W. and Fisher, C.R. (2003) Phylogeny and biogeography of deep sea vestimentiferan tubeworms and their bacterial symbionts. Symbiosis 34, 141.Google Scholar
Miura, T. and Kojima, S. (2006) Two new species of vestimentiferan tubeworm (Polychaeta: Siboglinidae a.k.a. Pogonophora) from the Brothers Caldera, Kermadec Arc, South Pacific Ocean. Species Diversity 11, 209224.CrossRefGoogle Scholar
Olu-LeRoy, K., Sibuet, M., Fiala-Medioni, A., Gofas, S., Salas, C., Mariotti, A., Foucher, J.P. and Woodside, J. (2004) ‘Cold seep’ communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep-Sea Research I, Oceanographic Research Papers 51, 19151937.CrossRefGoogle Scholar
Pleijel, F., Dahlgren, T.G. and Rouse, G.W. (2009) Progress in systematics: from Siboglinidae to Pogonophora and Vestimentifera and back to Siboglinidae. Comptes Rendues Biologies 332, 140148.CrossRefGoogle ScholarPubMed
Ronquist, F. and Huelsenbeck, J.P. (2003) MrBayes: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 15721574.CrossRefGoogle ScholarPubMed
Saito, M., Kojima, S. and Endo, K. (2000) Mitochondrial CO1 sequences of brachiopods: genetic code shared with protostomes and limits of utility for phylogenetic reconstruction. Molecular Phylogenetics and Evolution 15, 331344.CrossRefGoogle Scholar
Schander, C. and Halanych, K.M. (2003) DNA, PCR and formalinized animal tissue—a short review and protocols. Organisms, Diversity and Evolution 3, 195205.CrossRefGoogle Scholar
Schulze, A. (2003) Phylogeny of Vestimentifera (Siboglinidae, Annelida) inferred from morphology. Zoologica Scripta 32, 321342.CrossRefGoogle Scholar
Schulze, A. and Halanych, K.M. (2003) Siboglinid evolution shaped by habitat preference and sulphide tolerance. Hydrobiologia 496, 199205.CrossRefGoogle Scholar
Sommer, S., Linke, P., Pfannkuche, O., Schleicher, T., Scheider, V., Deimling, J., Reitz, A., Haekel, M., Flogel, S. and Hensen, C. (2009) Seabed methane emissions and the habitat of frenulate tubeworms on the Captain Arutyonov mud volcano (Gulf of Cadiz). Marine Ecology Progress Series 382, 6986.CrossRefGoogle Scholar
Southward, E.C., Schulze, A. and Gardiner, S.L. (2005) Pogonophora (Annelida): form and function. Hydrobiologia 535/536, 227251.Google Scholar
Southward, E.C., Andersen, A. and Hourdez, S.(in press) (title not yet released). Zoosystema.Google Scholar
Tamura, K., Dudley, J., Nei, M. and Kumar, S. (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle ScholarPubMed
Taviani, M. (2002) The Mediterranean benthos from late Miocene up to present: ten million years of dramatic climatic and geologic vicissitudes. Biologia Marina Mediterranea 9, 445463.Google Scholar
Taviani, M. (2003) Shaping the biogeography of the Mediterranean basin: one geologist's perspective. Biogeographia 24, 1532.Google Scholar
Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed