Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T11:24:17.952Z Has data issue: false hasContentIssue false

84.18 An inductive proof of the arithmetic mean — geometric mean inequality

Published online by Cambridge University Press:  01 August 2016

Zbigniew Urmanin*
Affiliation:
Otto-Hahn-Str. 8, 42897 Remscheid-Lennep, Germany

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bullen, P. S. Mitrinović, D. S. and Vasić, P. M. Means and their inequalities, Reidel, Dordrecht, Holland (1988).CrossRefGoogle Scholar
2. Rüthing, D. Proofs of the arithmetic mean – geometric mean inequality, Int. J. Math. Educ. Sci. Technol. 13, (1) (1982) pp. 4954.CrossRefGoogle Scholar
3. Beckenbach, E. F. Bellman, R. Inequalities, Springer (1971).Google Scholar
4. Mitrinovic, D. S. Analytic inequalities, Springer (1970).CrossRefGoogle Scholar
5. Hardy, G. H. Littlewood, J. E. Pólya, G. Inequalities, Cambridge University Press (1967).Google Scholar