Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-10T15:08:11.014Z Has data issue: false hasContentIssue false

Edge-based a Posteriori Error Estimators for GeneratingQuasi-optimal Simplicial Meshes

Published online by Cambridge University Press:  26 August 2010

A. Agouzal
Affiliation:
University Lyon1, Institute Camille Jordan, UMR 5208, 69100 Villeurbanne, France
K. Lipnikov
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM, 87545, U.S.A.
Yu. Vassilevsk*
Affiliation:
Institute of Numerical Mathematics, Gubkina str. 8, Moscow 119333, Russia
*
* Corresponding author: E-mail:yuri.vassilevski@gmail.com
Get access

Abstract

We present a new method for generating a d-dimensional simplicial meshthat minimizes the L p -norm,p > 0, of the interpolation error or its gradient. The methoduses edge-based error estimates to build a tensor metric. We describe and analyze thebasic steps of our method

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A. Agouzal, K. Lipnikov, Y. Vassilevski. Generation of quasi-optimal meshes based on a posteriori error estimates. In: Proceedings of 16th International Meshing Roundtable. M.Brewer and D.Marcum (eds.), Springer, (2007), 139–148.
A. Agouzal, K. Lipnikov, Y. Vassilevski. Hessian-free metric-based mesh adaptation via geometry of interpolation error. To appear in Comp. Math. Math. Phys., 50 (2010).
Vassilevski, Y., Lipnikov, K.. Adaptive algorithm for generation of quasi-optimal meshes . Comp. Math. Math. Phys., 39 (1999), 15321551.Google Scholar
Vassilevski, Y., Agouzal, A.. An unified asymptotic analysis of interpolation errors for optimal meshes . Doklady Mathematics, 72 (2005), 879882.Google Scholar