No CrossRef data available.
Article contents
A Global Stochastic Optimization Method for Large ScaleProblems
Published online by Cambridge University Press: 26 August 2010
Abstract
In this paper, a new hybrid simulated annealing algorithm for constrained globaloptimization is proposed. We have developed a stochastic algorithm called ASAPSPSA thatuses Adaptive Simulated Annealing algorithm (ASA). ASA is a series of modifications to thebasic simulated annealing algorithm (SA) that gives the region containing the globalsolution of an objective function. In addition, Simultaneous Perturbation StochasticApproximation (SPSA) method, for solving unconstrained optimization problems, is used torefine the solution. We also propose Penalty SPSA (PSPSA) for solving constrainedoptimization problems. The constraints are handled using exterior point penalty functions.The combination of both techniques ASA and PSPSA provides a powerful hybrid optimizationmethod. The proposed method has a good balance between exploration and exploitation withvery fast computation speed, its performance as a viable large scale optimization methodis demonstrated by testing it on a number of benchmark functions with 2 - 500 dimensions.In addition, applicability of the algorithm on structural design was tested and successfulresults were obtained
Keywords
- Type
- Research Article
- Information
- Copyright
- © EDP Sciences, 2010