Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T05:56:25.211Z Has data issue: false hasContentIssue false

Host Factors in Viral Life Cycles

Published online by Cambridge University Press:  17 October 2012

G. Pérez-Vilaró
Affiliation:
Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
J. Jungfleisch
Affiliation:
Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
V. Saludes
Affiliation:
Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
N. Scheller
Affiliation:
Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
M. Giménez-Barcons
Affiliation:
Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
J. Díez*
Affiliation:
Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
*
Corresponding author. E-mail: juana.diez@upf.edu
Get access

Abstract

Viruses are obligate intracellular parasites that rely on the host cell for expansion.With the development of global analyses techniques like transcriptomics, proteomics andsiRNA library screening of complete cellular gene sets, a large range of host cell factorshave been discovered that either support or restrict virus growth. Here we summarize someof the recent findings and focus our discussion on the hepatitis C virus and the humanimmunodeficiency virus, two major pathogens that threat global health. The identificationof cellular proteins affecting multiple viruses points to the existence of centralregulation nodes that might be exploited for both, a quantitative description ofhost-virus interactions within single infected cells and the development of novel,broad-spectrum antiviral drugs.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Ahlquist, P.. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat. Rev. Microbiol., 4 (2006), No. 5, 371382. CrossRefGoogle ScholarPubMed
Ajamian, L., Abrahamyan, L., Milev, M., Ivanov, P.V., Kulozik, A.E., Gehring, N.H., Mouland, A.J.. Unexpected roles for UPF1 in HIV-1 RNA metabolism and translation. RNA, 14 (2008), No. 5, 914927. CrossRefGoogle Scholar
Alves-Rodrigues, I., Mas, A., Díez, J.. Xenopus Xp54 and Human RCK/p54 Helicases Functionally Replace Yeast Dhh1p in Brome Mosaic Virus RNA Replication. J.Virol., 81 (2007), No. 8, 43784380. CrossRefGoogle Scholar
Angeletti, P.C., Kim, K., Fernandes, F.J., Lambert, P.F.. Stable Replication of Papillomavirus Genomes in Saccharomyces cerevisiae. J. Virol., 76 (2002), No. 7, 33503358. CrossRefGoogle ScholarPubMed
Ariumi, Y., Kuroki, M., Abe, K., Dansako, H., Ikeda, M., Wakita, T., Kato, N.. DDX3 DEAD-box RNA helicase is required for hepatitis C virus RNA replication. J. Virol., 81 (2007), No. 24, 1392213926. CrossRefGoogle Scholar
Ariumi, Y., Kuroki, M., Kushima, Y., Osugi, K., Hijikata, M., Maki, M., Ikeda, M., Kato, N.. Hepatitis C virus hijacks P-body and stress granule components around lipid droplets. J. Virol., 85 (2011), No. 14, 68826892. CrossRefGoogle ScholarPubMed
Bandyopadhyay, S., Friedman, R.C., Marquez, R.T., Keck, K., Kong, B., Icardi, M.S., Brown, K.E., Burge, C.B., Schmidt, W.N., Wang, Y., McCaffrey, A.P.. Hepatitis C virus infection and hepatic stellate cell activation downregulate miR-29 : miR-29 overexpression reduces hepatitis C viral abundance in culture. J. Infect. Dis., 203 (2011), No. 12, 17531762. CrossRefGoogle ScholarPubMed
Brass, A.L., Dykxhoorn, D.M., Benita, Y., Yan, N., Engelman, A., Xavier, R.J., Lieberman, J., Elledge, S.J.. Identification of host proteins required for HIV infection through a functional genomic screen. Science, 319 (2008), No. 5865, 921926. CrossRefGoogle Scholar
Bushman, F.D., Malani, N., Fernandes, J., D’Orso, I., Cagney, G., Diamond, T.L., Zhou, H., Hazuda, D.J., Espeseth, A.S., Konig, R., Bandyopadhyay, S., Ideker, T., Goff, S.P., Krogan, N.J., Frankel, A.D., Young, J.A., Chanda, S.K.. Host cell factors in HIV replication : meta-analysis of genome-wide studies. PLoS Pathog., 5 (2009), No. 5, e1000437. CrossRefGoogle ScholarPubMed
Coller, J., Parker, R.. Eukaryotic mRNA decapping. Annu. Rev. Biochem., 73 (2004), No. 1, 861890. CrossRefGoogle ScholarPubMed
Chiu, Y.L., Rana, T.M.. RNAi in human cells : basic structural and functional features of small interfering RNA. Mol. Cell, 10 (2002), No. 3, 549561. CrossRefGoogle ScholarPubMed
Dahari, H., Ribeiro, R.M., Rice, C.M., Perelson, A.S.. Mathematical modeling of subgenomic hepatitis C virus replication in Huh-7 cells. J. Virol., 81 (2007), No. 2, 750760. CrossRefGoogle ScholarPubMed
Dee, K.U., Shuler, M.L.. A mathematical model of the trafficking of acid-dependent enveloped viruses : application to the binding, uptake, and nuclear accumulation of baculovirus. Biotechnol. Bioeng., 54 (1997), No. 5, 468490. 3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Diez, J., Ishikawa, M., Kaido, M., Ahlquist, P.. Identification and characterization of a host protein required for efficient template selection in viral RNA replication. Proc. Natl .Acad. Sci. U.S.A, 97 (2000), No. 8, 3913. CrossRefGoogle ScholarPubMed
Dougherty, J.D., White, J.P., Lloyd, R.E.. Poliovirus-mediated disruption of cytoplasmic processing bodies. J. Virol., 85 (2011), No. 1, 6475. CrossRefGoogle ScholarPubMed
Echeverri, C.J., Beachy, P.A., Baum, B., Boutros, M., Buchholz, F., Chanda, S.K., Downward, J., Ellenberg, J., Fraser, A.G., Hacohen, N., Hahn, W.C., Jackson, A.L., Kiger, A., Linsley, P.S., Lum, L., Ma, Y., Mathey-Prevot, B., Root, D.E., Sabatini, D.M., Taipale, J., Perrimon, N., Bernards, R.. Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat. Methods, 3 (2006), No. 10, 777779. CrossRefGoogle ScholarPubMed
Emara, M.M., Brinton, M.A.. Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly. Proc. Natl. Acad. Sci. U.S.A., 104 (2007), No. 21, 90419046. CrossRefGoogle Scholar
Emara, M.M., Liu, H., Davis, W.G., Brinton, M.A.. Mutation of mapped TIA-1/TIAR binding sites in the 3’ terminal stem-loop of West Nile virus minus-strand RNA in an infectious clone negatively affects genomic RNA amplification. J. Virol., 82 (2008), No. 21, 1065710670. CrossRefGoogle Scholar
Erickson, S.L., Lykke-Andersen, J.. Cytoplasmic mRNP granules at a glance. J. Cell Sci., 124 (2011), No. Pt 3, 293-297. CrossRefGoogle Scholar
Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C.. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391 (1998), No. 6669, 806811. CrossRefGoogle ScholarPubMed
Fontanes, V., Raychaudhuri, S., Dasgupta, A.. A cell-permeable peptide inhibits hepatitis C virus replication by sequestering IRES transacting factors. Virology, 394 (2009), No. 1, 8290. CrossRefGoogle ScholarPubMed
Franze de Fernandez, M.T., Eoyang, L., August, J.T.. Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. Nature, 219 (1968), No. 154, 588. CrossRefGoogle ScholarPubMed
Gancarz, B.L., Hao, L., He, Q., Newton, M.A., Ahlquist, P.. Systematic Identification of Novel, Essential Host Genes Affecting Bromovirus RNA Replication. PLoS ONE, 6 (2011), No. 8, e23988. CrossRefGoogle ScholarPubMed
Gelperin, D.M., White, M.A., Wilkinson, M.L., Kon, Y., Kung, L.A., Wise, K.J., Lopez-Hoyo, N., Jiang, L., Piccirillo, S., Yu, H., Gerstein, M., Dumont, M.E., Phizicky, E.M., Snyder, M., Grayhack, E.J.. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev ., 19 (2005), No. 23, 28162826. CrossRefGoogle ScholarPubMed
Ghaemmaghami, S., Huh, W.-K., Bower, K., Howson, R.W., Belle, A., Dephoure, N., O’Shea, E.K., Weissman, J.S.. Global analysis of protein expression in yeast. Nature, 425 (2003), No. 6959, 737741. CrossRefGoogle Scholar
Giménez-Barcons, M., Díez, J.. Yeast processing bodies and stress granules : self-assembly ribonucleoprotein particles. Microb. Cell Fact., 10 (2011), No. 73. CrossRefGoogle ScholarPubMed
Henke, J.I., Goergen, D., Zheng, J., Song, Y., Schuttler, C.G., Fehr, C., Junemann, C., Niepmann, M.. microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J., 27 (2008), No. 24, 33003310. CrossRefGoogle ScholarPubMed
Hensel, S.C., Rawlings, J.B., Yin, J.. Stochastic kinetic modeling of vesicular stomatitis virus intracellular growth. Bull. Math. Biol., 71 (2009), No. 7, 16711692. CrossRefGoogle ScholarPubMed
Hou, W., Tian, Q., Zheng, J., Bonkovsky, H.L.. MicroRNA-196 represses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins. Hepatology, 51 (2010), No. 5, 14941504. CrossRefGoogle ScholarPubMed
Huang, J., Wang, F., Argyris, E., Chen, K., Liang, Z., Tian, H., Huang, W., Squires, K., Verlinghieri, G., Zhang, H.. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat. Med., 13 (2007), No. 10, 12411247. CrossRefGoogle Scholar
Huh, W.-K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., O’Shea, E.K.. Global analysis of protein localization in budding yeast. Nature, 425 (2003), No. 6959, 686691. CrossRefGoogle Scholar
Ishaq, M., Hu, J., Wu, X., Fu, Q., Yang, Y., Liu, Q., Guo, D.. Knockdown of cellular RNA helicase DDX3 by short hairpin RNAs suppresses HIV-1 viral replication without inducing apoptosis. Mol. Biotechnol., 39 (2008), No. 3, 231238. CrossRefGoogle Scholar
Ishida, H., Tatsumi, T., Hosui, A., Nawa, T., Kodama, T., Shimizu, S., Hikita, H., Hiramatsu, N., Kanto, T., Hayashi, N., Takehara, T.. Alterations in microRNA expression profile in HCV-infected hepatoma cells : involvement of miR-491 in regulation of HCV replication via the PI3 kinase/Akt pathway. Biochem Biophys. Res. Commun., 412 (2011), No. 1, 9297. CrossRefGoogle ScholarPubMed
Jacobson, I.M., McHutchison, J.G., Dusheiko, G., Di Bisceglie, A.M., Reddy, K.R., Bzowej, N.H., Marcellin, P., Muir, A.J., Ferenci, P., Flisiak, R., George, J., Rizzetto, M., Shouval, D., Sola, R., Terg, R.A., Yoshida, E.M., Adda, N., Bengtsson, L., Sankoh, A.J., Kieffer, T.L., George, S., Kauffman, R.S., Zeuzem, S.. Telaprevir for previously untreated chronic hepatitis C virus infection. N. Engl. J. Med., 364 (2011), No. 25, 24052416. CrossRefGoogle ScholarPubMed
Janda, M., Ahlquist, P.. RNA-dependent replication, transcription, and persistence of brome mosaic virus RNA replicons in S. cerevisiae. Cell, 72 (1993), No. 6, 961970. CrossRefGoogle Scholar
Jangra, R.K., Yi, M., Lemon, S.M.. DDX6 (Rck/p54) is required for efficient hepatitis C virus replication but not for internal ribosome entry site-directed translation. J. Virol., 84 (2010), No. 13, 68106824. CrossRefGoogle Scholar
Jiang, Y., Serviene, E., Gal, J., Panavas, T., Nagy, P.D.. Identification of Essential Host Factors Affecting Tombusvirus RNA Replication Based on the Yeast Tet Promoters Hughes Collection. J. Virol., 80 (2006), No. 15, 73947404. CrossRefGoogle ScholarPubMed
Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M., Sarnow, P.. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 309 (2005), No. 5740, 15771581. CrossRefGoogle ScholarPubMed
Khong, A., Jan, E.. Modulation of stress granules and P bodies during dicistrovirus infection. J. Virol., 85 (2011), No. 4, 14391451. CrossRefGoogle Scholar
Konig, R., Zhou, Y., Elleder, D., Diamond, T.L., Bonamy, G.M., Irelan, J.T., Chiang, C.Y., Tu, B.P., De Jesus, P.D., Lilley, C.E., Seidel, S., Opaluch, A.M., Caldwell, J.S., Weitzman, M.D., Kuhen, K.L., Bandyopadhyay, S., Ideker, T., Orth, A.P., Miraglia, L.J., Bushman, F.D., Young, J.A., Chanda, S.K.. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell, 135 (2008), No. 1, 4960. CrossRefGoogle Scholar
Korf, M., Jarczak, D., Beger, C., Manns, M.P., Kruger, M.. Inhibition of hepatitis C virus translation and subgenomic replication by siRNAs directed against highly conserved HCV sequence and cellular HCV cofactors. J. Hepatol., 43 (2005), No. 2, 225234. CrossRefGoogle ScholarPubMed
Kushner, D.B., Lindenbach, B.D., Grdzelishvili, V.Z., Noueiry, A.O., Paul, S.M., Ahlquist, P.. Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus. Proc. Natl. Acad. Sci. U.S.A., 100 (2003), No. 26, 1576415769. CrossRefGoogle ScholarPubMed
Lee, R.C., Feinbaum, R.L., Ambros, V.. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75 (1993), No. 5, 843854. CrossRefGoogle Scholar
Li, Q., Brass, A.L., Ng, A., Hu, Z., Xavier, R.J., Liang, T.J., Elledge, S.J.. A genome-wide genetic screen for host factors required for hepatitis C virus propagation. Proc. Natl. Acad. Sci. U.S.A., 106 (2009), No. 38, 1641016415. CrossRefGoogle ScholarPubMed
Li, W., Li, Y., Kedersha, N., Anderson, P., Emara, M., Swiderek, K.M., Moreno, G.T., Brinton, M.A.. Cell Proteins TIA-1 and TIAR Interact with the 3’ Stem-Loop of the West Nile Virus Complementary Minus-Strand RNA and Facilitate Virus Replication. J. Virol., 76 (2002), No. 23, 1198912000. CrossRefGoogle ScholarPubMed
Lim, K.I., Lang, T., Lam, V., Yin, J.. Model-based design of growth-attenuated viruses. PLoS Comput. Biol., 2 (2006), No. 9, e116. CrossRefGoogle ScholarPubMed
Liu, X., Wang, T., Wakita, T., Yang, W.. Systematic identification of microRNA and messenger RNA profiles in hepatitis C virus-infected human hepatoma cells. Virology, 398 (2010), No. 1, 5767. CrossRefGoogle ScholarPubMed
Maeda, M., Sawa, H., Tobiume, M., Tokunaga, K., Hasegawa, H., Ichinohe, T., Sata, T., Moriyama, M., Hall, W.W., Kurata, T., Takahashi, H.. Tristetraprolin inhibits HIV-1 production by binding to genomic RNA. Microbes Infect., 8 (2006), No. 11, 26472656. CrossRefGoogle ScholarPubMed
Maga, G., Falchi, F., Radi, M., Botta, L., Casaluce, G., Bernardini, M., Irannejad, H., Manetti, F., Garbelli, A., Samuele, A., Zanoli, S., Este, J.A., Gonzalez, E., Zucca, E., Paolucci, S., Baldanti, F., De Rijck, J., Debyser, Z., Botta, M.. Toward the discovery of novel anti-HIV drugs. Second-generation inhibitors of the cellular ATPase DDX3 with improved anti-HIV activity : synthesis, structure-activity relationship analysis, cytotoxicity studies, and target validation. ChemMedChem., 6 (2011), No. 8, 13711389. CrossRefGoogle ScholarPubMed
Martin, K.L., Johnson, M., D’Aquila, R.T.. APOBEC3G complexes decrease human immunodeficiency virus type 1 production. J. Virol., 85 (2011), No. 18, 93149326. CrossRefGoogle Scholar
Mas, A., ALves-Rodrigues, I., Noueiry, A., Ahlquist, P., Díez, J.. Host deadenylation-dependent mRNA decapping factors are required for a key step in brome mosaic virus RNA replication. J.Virol., 80 (2006), No. 1, 246. CrossRefGoogle ScholarPubMed
Mnaimneh, S., Davierwala, A.P., Haynes, J., Moffat, J., Peng, W.-T., Zhang, W., Yang, X., Pootoolal, J., Chua, G., Lopez, A., Trochesset, M., Morse, D., Krogan, N.J., Hiley, S.L., Li, Z., Morris, Q., Grigull, J., Mitsakakis, N., Roberts, C.J., Greenblatt, J.F., Boone, C., Kaiser, C.A., Andrews, B.J., Hughes, T.R.. Exploration of Essential Gene Functions via Titratable Promoter Alleles. Cell, 118 (2004), No. 1, 3144. CrossRefGoogle ScholarPubMed
Nakabayashi, J.. A compartmentalization model of hepatitis C virus replication : an appropriate distribution of HCV RNA for the effective replication. J. Theor. Biol., 300 (2012), No. 110-117. CrossRefGoogle ScholarPubMed
Nathans, R., Chu, C.Y., Serquina, A.K., Lu, C.C., Cao, H., Rana, T.M.. Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol. Cell, 34 (2009), No. 6, 696709. CrossRefGoogle ScholarPubMed
Noueiry, A.O., Chen, J., Ahlquist, P.. A mutant allele of essential, general translation initiation factor DED1 selectively inhibits translation of a viral mRNA. Proc. Natl. Acad. Sci. U.S.A., 97 (2000), No. 24, 1298512990. CrossRefGoogle ScholarPubMed
Noueiry, A.O., Díez, J., Falk, S.P., Chen, J., Ahlquist, P.. Yeast Lsm1p-7p/Pat1p Deadenylation-Dependent mRNA-Decapping Factors Are Required for Brome Mosaic Virus Genomic RNA Translation. Mol. Cell. Biol., 23 (2003), No. 12, 40944106. CrossRefGoogle Scholar
Panavas, T., Nagy, P.D.. Yeast as a model host to study replication and recombination of defective interfering RNA of Tomato bushy stunt virus. Virology, 314 (2003), No. 1, 315325. CrossRefGoogle ScholarPubMed
Panavas, T., Serviene, E., Brasher, J., Nagy, P.D.. Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses. Proc. Natl. Acad. Sci. U.S.A., 102 (2005), No. 20, 73267331. CrossRefGoogle ScholarPubMed
Pantaleo, V., Rubino, L., Russo, M.. Replication of Carnation Italian Ringspot Virus Defective Interfering RNA in Saccharomyces cerevisiae. J. Virol., 77 (2003), No. 3, 21162123. CrossRefGoogle ScholarPubMed
Parsons, A.B., Geyer, R., Hughes, T.R., Boone, C.. Yeast genomics and proteomics in drug discovery and target validation. Prog. Cell Cycle Res., 5 (2003), No. 159-166. Google ScholarPubMed
Peng, X., Li, Y., Walters, K.A., Rosenzweig, E.R., Lederer, S.L., Aicher, L.D., Proll, S., Katze, M.G.. Computational identification of hepatitis C virus associated microRNA-mRNA regulatory modules in human livers. BMC Genomics, 10 (2009), No. 373. CrossRefGoogle Scholar
Pérez-Vilaró, G., Scheller, N., Saludes, V., Díez, J.. HCV infection alters P-body composition but is independent of P-body granules. J. Virol., 86 (2012), No. 16, 87408749. CrossRefGoogle ScholarPubMed
Persson, R., Hodges, M., King, B.D., Chen, A., Zeh, K., Levine, A.A.. Pharmacokinetics of Miravirsen, a miR-122 inhibitor, predict the prolonged viral load reduction in treatment naive genotype 1 HCV infected patients. J. Hepatol., 56 (2012), Suppl. 2, S477. CrossRefGoogle Scholar
Poordad, F., McCone, J. Jr., Bacon, B.R., Bruno, S., Manns, M.P., Sulkowski, M.S., Jacobson, I.M., Reddy, K.R., Goodman, Z.D., Boparai, N., DiNubile, M.J., Sniukiene, V., Brass, C.A., Albrecht, J.K., Bronowicki, J.P.. Boceprevir for untreated chronic HCV genotype 1 infection. N. Engl. J. Med., 364 (2011), No. 13, 11951206. CrossRefGoogle ScholarPubMed
Price, B.D., Eckerle, L.D., Ball, L.A., Johnson, K.L.. Nodamura virus RNA replication in Saccharomyces cerevisiae : heterologous gene expression allows replication-dependent colony formation. J. Virol., 79 (2005), No. 1, 495502. CrossRefGoogle ScholarPubMed
Price, B.D., Rueckert, R.R., Ahlouist, P.. Complete replication of an animal virus and maintenance of expression vectors derived from it in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A., 93 (1996), No. 18, 94659470. CrossRefGoogle ScholarPubMed
Raghavan, V., Malik, P.S., Choudhury, N.R., Mukherjee, S.K.. The DNA-A Component of a Plant Geminivirus (Indian Mung Bean Yellow Mosaic Virus) Replicates in Budding Yeast Cells. J. Virol., 78 (2004), No. 5, 24052413. CrossRefGoogle ScholarPubMed
Randall, G., Panis, M., Cooper, J.D., Tellinghuisen, T.L., Sukhodolets, K.E., Pfeffer, S., Landthaler, M., Landgraf, P., Kan, S., Lindenbach, B.D., Chien, M., Weir, D.B., Russo, J.J., Ju, J., Brownstein, M.J., Sheridan, R., Sander, C., Zavolan, M., Tuschl, T., Rice, C.M.. Cellular cofactors affecting hepatitis C virus infection and replication. Proc. Natl. Acad. Sci. U.S.A., 104 (2007), No. 31, 1288412889. CrossRefGoogle Scholar
Reddy, B., Yin, J.. Quantitative intracellular kinetics of HIV type 1. AIDS Res Hum. Retroviruses, 15 (1999), No. 3, 273283. CrossRefGoogle ScholarPubMed
Rivas-Aravena, A., Ramdohr, P., Vallejos, M., Valiente-Echeverria, F., Dormoy-Raclet, V., Rodriguez, F., Pino, K., Holzmann, C., Huidobro-Toro, J.P., Gallouzi, I.E., Lopez-Lastra, M.. The Elav-like protein HuR exerts translational control of viral internal ribosome entry sites. Virology, 392 (2009), No. 2, 178185. CrossRefGoogle ScholarPubMed
Scheller, N., Mina, L.B., Galao, R.P., Chari, A., Giménez-Barcons, M., Noueiry, A., Fischer, U., Meyerhans, A., Díez, J.. Translation and replication of hepatitis C virus genomic RNA depends on ancient cellular proteins that control mRNA fates. Proc. Natl. Acad. Sci. U.S.A., 106 (2009), No. 32, 1351713522. CrossRefGoogle ScholarPubMed
Sean, P., Nguyen, J.H., Semler, B.L.. Altered interactions between stem-loop IV within the 5’ noncoding region of coxsackievirus RNA and poly(rC) binding protein 2 : effects on IRES-mediated translation and viral infectivity. Virology, 389 (2009), No. 1-2, 4558. CrossRefGoogle ScholarPubMed
Sherman, K.E., Flamm, S.L., Afdhal, N.H., Nelson, D.R., Sulkowski, M.S., Everson, G.T., Fried, M.W., Adler, M., Reesink, H.W., Martin, M., Sankoh, A.J., Adda, N., Kauffman, R.S., George, S., Wright, C.I., Poordad, F.. Response-guided telaprevir combination treatment for hepatitis C virus infection. N. Engl. J. Med., 365 (2011), No. 11, 10141024. CrossRefGoogle ScholarPubMed
Sidorenko, Y., Reichl, U.. Structured model of influenza virus replication in MDCK cells. Biotechnol. Bioeng., 88 (2004), No. 1, 114. CrossRefGoogle ScholarPubMed
Sioud, M.. Promises and challenges in developing RNAi as a research tool and therapy. Methods Mol. Biol., 703 (2011), No. 173-187. CrossRefGoogle Scholar
Spear, A., Sharma, N., Flanegan, J.B.. Protein-RNA tethering : the role of poly(C) binding protein 2 in poliovirus RNA replication. Virology, 374 (2008), No. 2, 280291. CrossRefGoogle ScholarPubMed
Sun, G., Li, H., Wu, X., Covarrubias, M., Scherer, L., Meinking, K., Luk, B., Chomchan, P., Alluin, J., Gombart, A.F., Rossi, J.J.. Interplay between HIV-1 infection and host microRNAs. Nucleic Acids Res., 40 (2012), No. 5, 21812196. CrossRefGoogle ScholarPubMed
Tai, A.W., Benita, Y., Peng, L.F., Kim, S.S., Sakamoto, N., Xavier, R.J., Chung, R.T.. A functional genomic screen identifies cellular cofactors of hepatitis C virus replication. Cell Host Microbe, 5 (2009), No. 3, 298307. CrossRefGoogle ScholarPubMed
Tiscornia, G., Singer, O., Ikawa, M., Verma, I.M.. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. U.S.A., 100 (2003), No. 4, 18441848. CrossRefGoogle Scholar
Triboulet, R., Mari, B., Lin, Y.L., Chable-Bessia, C., Bennasser, Y., Lebrigand, K., Cardinaud, B., Maurin, T., Barbry, P., Baillat, V., Reynes, J., Corbeau, P., Jeang, K.T., Benkirane, M.. Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science, 315 (2007), No. 5818, 15791582. CrossRefGoogle ScholarPubMed
Ward, A.M., Bidet, K., Yinglin, A., Ler, S.G., Hogue, K., Blackstock, W., Gunaratne, J., Garcia-Blanco, M.A.. Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box RNA helicase DDX6 binds the DB1 and DB2 3’ UTR structures. RNA Biol., 8 (2011), No. 6, 11731186. CrossRefGoogle ScholarPubMed
White, J.P., Lloyd, R.E.. Regulation of stress granules in virus systems. Trends Microbiol., 20 (2012), No. 4, 175183. CrossRefGoogle ScholarPubMed
Winzeler, E.A., Shoemaker, D.D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R.,Benito, R., Boeke, J.D., Bussey, H., Chu, A.M., Connelly, C., Davis, K., Dietrich, F., Dow, S.W., El Bakkoury, M., Foury, F., Friend, S.H., Gentalen, E., Giaever, G., Hegemann, J.H., Jones, T., Laub, M., Liao, H., Liebundguth, N., Lockhart, D.J., Lucau-Danila, A., Lussier, M., M’Rabet, N., Menard, P., Mittmann, M., Pai, C., Rebischung, C., Revuelta, J.L., Riles, L., Roberts, C.J., Ross-MacDonald, P., Scherens, B., Snyder, M., Sookhai-Mahadeo, S., Storms, R.K., V?ronneau, S., Voet, M., Volckaert, G., Ward, T.R., Wysocki, R., Yen, G.S., Yu, K., Zimmermann, K., Philippsen, P., Johnston, M., Davis, R.W.. Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. Science, 285 (1999), No. 5429, 901906. CrossRefGoogle Scholar
Xia, H., Mao, Q., Paulson, H.L., Davidson, B.L.. siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol., 20 (2002), No. 10, 10061010. CrossRefGoogle Scholar
Yeung, M.L., Houzet, L., Yedavalli, V.S., Jeang, K.T.. A genome-wide short hairpin RNA screening of jurkat T-cells for human proteins contributing to productive HIV-1 replication. J. Biol. Chem., 284 (2009), No. 29, 1946319473. CrossRefGoogle Scholar
Yi, Z., Fang, C., Pan, T., Wang, J., Yang, P., Yuan, Z.. Subproteomic study of hepatitis C virus replicon reveals Ras-GTPase-activating protein binding protein 1 as potential HCV RC component. Biochem. Biophys. Res. Commun., 350 (2006), No. 1, 174178. CrossRefGoogle ScholarPubMed
Yu, S.F., Lujan, P., Jackson, D.L., Emerman, M., Linial, M.L.. The DEAD-box RNA helicase DDX6 is required for efficient encapsidation of a retroviral genome. PLoS Pathog., 7 (2011), No. 10, e1002303. CrossRefGoogle ScholarPubMed
Zhao, K.-N., Frazer, I.H.. Replication of Bovine Papillomavirus Type 1 (BPV-1) DNA in Saccharomyces cerevisiae following Infection with BPV-1 Virions. J. Virol., 76 (2002), No. 7, 33593364. CrossRefGoogle ScholarPubMed
Zhou, H., Xu, M., Huang, Q., Gates, A.T., Zhang, X.D., Castle, J.C., Stec, E., Ferrer, M., Strulovici, B., Hazuda, D.J., Espeseth, A.S.. Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe, 4 (2008), No. 5, 495504. CrossRefGoogle ScholarPubMed