Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T13:51:06.071Z Has data issue: false hasContentIssue false

Bridge numbers of torus knots

Published online by Cambridge University Press:  01 November 2007

JENNIFER SCHULTENS*
Affiliation:
Department of Mathematics, 1 Shields Avenue, University of California, Davis, CA 95616, U.S.A. e-mail: jcs@math.ucdavis.edu

Abstract

We provide a new self contained proof of the following result of H. Schubert: If K is a (p,q)-torus knot, then the bridge number of K is min{p, q}.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Schubert, H.. Knoten und Vollringe. Acta Math. 90 (1953), 131286.CrossRefGoogle Scholar
[2]Schubert, H.. über eine numerische Knoteninvariante. Math. Z. 61 (1954), 245288.Google Scholar
[3]Schultens, J.. Additivity of bridge numbers of knots. Math. Proc. Camb. Phil. Soc. 135 (2003), 3, 539544.Google Scholar